Robust Circular Distance and its Application in the Identification of Outliers in the Simple Circular Regression Model Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.3923/ajaps.2017.126.133
Background and Objective: The existence of outliers in any type of data influences the efficiency of an estimator.Few methods for detecting outliers in a simple circular regression model have been proposed in the study but it suspected that they are not very successful in the presence of multiple outliers in a data set.This study aimed to investigate new statistic to identify multiple outliers in the response variable in a simple circular regression model.Materials and Methods: The proposed statistic is based on calculating robust circular distance between circular residuals and circular location parameter.The performance of the proposed statistic is evaluated by the proportion of detected outliers and the rate of masking and swamping.The simulation study is applied for different sample sizes at 10 and 20% ratios of contamination.Results: The results from simulated data showed that the proposed statistic has the highest proportion of outliers and the lowest rate of masking comparing with some existing methods.Conclusion: The proposed statistic is very successful in detecting outliers with negligible amount of masking and swamping rates.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3923/ajaps.2017.126.133
- https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdf
- OA Status
- bronze
- Cited By
- 4
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2626727685
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2626727685Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3923/ajaps.2017.126.133Digital Object Identifier
- Title
-
Robust Circular Distance and its Application in the Identification of Outliers in the Simple Circular Regression ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-06-15Full publication date if available
- Authors
-
Ehab A. Mahmood, Habshah Midi, Sohel Rana, Abdul Ghapor HussinList of authors in order
- Landing page
-
https://doi.org/10.3923/ajaps.2017.126.133Publisher landing page
- PDF URL
-
https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdfDirect OA link when available
- Concepts
-
Outlier, Statistic, Estimator, Statistics, Mathematics, Regression analysis, Masking (illustration), Linear regression, Regression, Sample size determination, Robust statistics, Pattern recognition (psychology), Computer science, Artificial intelligence, Visual arts, ArtTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2626727685 |
|---|---|
| doi | https://doi.org/10.3923/ajaps.2017.126.133 |
| ids.doi | https://doi.org/10.3923/ajaps.2017.126.133 |
| ids.mag | 2626727685 |
| ids.openalex | https://openalex.org/W2626727685 |
| fwci | 0.31563273 |
| type | article |
| title | Robust Circular Distance and its Application in the Identification of Outliers in the Simple Circular Regression Model |
| biblio.issue | 3 |
| biblio.volume | 10 |
| biblio.last_page | 133 |
| biblio.first_page | 126 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T13141 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9302999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Applications |
| topics[2].id | https://openalex.org/T14111 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9193999767303467 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Diverse Research Studies Overview |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9187294244766235 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C89128539 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7552380561828613 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1949963 |
| concepts[1].display_name | Statistic |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7071608304977417 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.658615231513977 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5919840335845947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C152877465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5130618810653687 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[5].display_name | Regression analysis |
| concepts[6].id | https://openalex.org/C2777402240 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4665652811527252 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[6].display_name | Masking (illustration) |
| concepts[7].id | https://openalex.org/C48921125 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4352792501449585 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[7].display_name | Linear regression |
| concepts[8].id | https://openalex.org/C83546350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4276261627674103 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[8].display_name | Regression |
| concepts[9].id | https://openalex.org/C129848803 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4199269413948059 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[9].display_name | Sample size determination |
| concepts[10].id | https://openalex.org/C67226441 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4122493863105774 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1665389 |
| concepts[10].display_name | Robust statistics |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.33806008100509644 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3133506178855896 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20668035745620728 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C153349607 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[14].display_name | Visual arts |
| concepts[15].id | https://openalex.org/C142362112 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[15].display_name | Art |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.9187294244766235 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/statistic |
| keywords[1].score | 0.7552380561828613 |
| keywords[1].display_name | Statistic |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.7071608304977417 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.658615231513977 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5919840335845947 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/regression-analysis |
| keywords[5].score | 0.5130618810653687 |
| keywords[5].display_name | Regression analysis |
| keywords[6].id | https://openalex.org/keywords/masking |
| keywords[6].score | 0.4665652811527252 |
| keywords[6].display_name | Masking (illustration) |
| keywords[7].id | https://openalex.org/keywords/linear-regression |
| keywords[7].score | 0.4352792501449585 |
| keywords[7].display_name | Linear regression |
| keywords[8].id | https://openalex.org/keywords/regression |
| keywords[8].score | 0.4276261627674103 |
| keywords[8].display_name | Regression |
| keywords[9].id | https://openalex.org/keywords/sample-size-determination |
| keywords[9].score | 0.4199269413948059 |
| keywords[9].display_name | Sample size determination |
| keywords[10].id | https://openalex.org/keywords/robust-statistics |
| keywords[10].score | 0.4122493863105774 |
| keywords[10].display_name | Robust statistics |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.33806008100509644 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3133506178855896 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.20668035745620728 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3923/ajaps.2017.126.133 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210185426 |
| locations[0].source.issn | 1996-3343 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1996-3343 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Asian Journal of Applied Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Asian Journal of Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3923/ajaps.2017.126.133 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018016834 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9827-1447 |
| authorships[0].author.display_name | Ehab A. Mahmood |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130343225 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Mathematical Research, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I130343225 |
| authorships[0].institutions[0].ror | https://ror.org/02e91jd64 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130343225 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Putra Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ehab A. Mahmood |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Mathematical Research, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5000700306 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0552-1636 |
| authorships[1].author.display_name | Habshah Midi |
| authorships[1].countries | BD |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I885507782 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Applied Science, East West University, Dhaka, Bangladesh |
| authorships[1].institutions[0].id | https://openalex.org/I885507782 |
| authorships[1].institutions[0].ror | https://ror.org/05p0tzt32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I885507782 |
| authorships[1].institutions[0].country_code | BD |
| authorships[1].institutions[0].display_name | East West University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Habshah Midi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Applied Science, East West University, Dhaka, Bangladesh |
| authorships[2].author.id | https://openalex.org/A5090637538 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4103-6726 |
| authorships[2].author.display_name | Sohel Rana |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I55141112 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Defence Science and Technology, National Defence University of Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I55141112 |
| authorships[2].institutions[0].ror | https://ror.org/00t53pv34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I55141112 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | National Defence University of Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sohel Rana |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Defence Science and Technology, National Defence University of Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia |
| authorships[3].author.id | https://openalex.org/A5108116863 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Abdul Ghapor Hussin |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I130343225 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Mathematics, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I130343225 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Mathematics, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor,Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I130343225 |
| authorships[3].institutions[0].ror | https://ror.org/02e91jd64 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I130343225 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | Universiti Putra Malaysia |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Abdul Ghapor Hussin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Mathematics, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor, Malaysia, Department of Mathematics, University Putra Malaysia, Jalan Upm, 43400 Serdang, Selangor,Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Circular Distance and its Application in the Identification of Outliers in the Simple Circular Regression Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2046343964, https://openalex.org/W4379515847, https://openalex.org/W2216963642, https://openalex.org/W2283061017, https://openalex.org/W3121734683, https://openalex.org/W2107646698, https://openalex.org/W1539940077, https://openalex.org/W1600426151, https://openalex.org/W3121311879, https://openalex.org/W1603140773 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3923/ajaps.2017.126.133 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210185426 |
| best_oa_location.source.issn | 1996-3343 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1996-3343 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Asian Journal of Applied Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Asian Journal of Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3923/ajaps.2017.126.133 |
| primary_location.id | doi:10.3923/ajaps.2017.126.133 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210185426 |
| primary_location.source.issn | 1996-3343 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1996-3343 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Asian Journal of Applied Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://scialert.net/qredirect.php?doi=ajaps.2017.126.133&linkid=pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Asian Journal of Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3923/ajaps.2017.126.133 |
| publication_date | 2017-06-15 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W4251507444, https://openalex.org/W2019555579, https://openalex.org/W2089831508, https://openalex.org/W2124262541, https://openalex.org/W2443998756 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 23, 50, 68 |
| abstract_inverted_index.10 | 121 |
| abstract_inverted_index.an | 16 |
| abstract_inverted_index.at | 120 |
| abstract_inverted_index.by | 99 |
| abstract_inverted_index.in | 7, 22, 31, 43, 49, 63, 67, 160 |
| abstract_inverted_index.is | 78, 97, 114, 157 |
| abstract_inverted_index.it | 35 |
| abstract_inverted_index.of | 5, 10, 15, 46, 93, 102, 108, 125, 141, 147, 166 |
| abstract_inverted_index.on | 80 |
| abstract_inverted_index.to | 55, 59 |
| abstract_inverted_index.20% | 123 |
| abstract_inverted_index.The | 3, 75, 127, 154 |
| abstract_inverted_index.and | 1, 73, 88, 105, 110, 122, 143, 168 |
| abstract_inverted_index.any | 8 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.but | 34 |
| abstract_inverted_index.for | 19, 116 |
| abstract_inverted_index.has | 137 |
| abstract_inverted_index.new | 57 |
| abstract_inverted_index.not | 40 |
| abstract_inverted_index.the | 13, 32, 44, 64, 94, 100, 106, 134, 138, 144 |
| abstract_inverted_index.been | 29 |
| abstract_inverted_index.data | 11, 51, 131 |
| abstract_inverted_index.from | 129 |
| abstract_inverted_index.have | 28 |
| abstract_inverted_index.rate | 107, 146 |
| abstract_inverted_index.some | 151 |
| abstract_inverted_index.that | 37, 133 |
| abstract_inverted_index.they | 38 |
| abstract_inverted_index.type | 9 |
| abstract_inverted_index.very | 41, 158 |
| abstract_inverted_index.with | 150, 163 |
| abstract_inverted_index.aimed | 54 |
| abstract_inverted_index.based | 79 |
| abstract_inverted_index.model | 27 |
| abstract_inverted_index.sizes | 119 |
| abstract_inverted_index.study | 33, 53, 113 |
| abstract_inverted_index.amount | 165 |
| abstract_inverted_index.lowest | 145 |
| abstract_inverted_index.rates. | 170 |
| abstract_inverted_index.ratios | 124 |
| abstract_inverted_index.robust | 82 |
| abstract_inverted_index.sample | 118 |
| abstract_inverted_index.showed | 132 |
| abstract_inverted_index.simple | 24, 69 |
| abstract_inverted_index.applied | 115 |
| abstract_inverted_index.between | 85 |
| abstract_inverted_index.highest | 139 |
| abstract_inverted_index.masking | 109, 148, 167 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.results | 128 |
| abstract_inverted_index.Methods: | 74 |
| abstract_inverted_index.circular | 25, 70, 83, 86, 89 |
| abstract_inverted_index.detected | 103 |
| abstract_inverted_index.distance | 84 |
| abstract_inverted_index.existing | 152 |
| abstract_inverted_index.identify | 60 |
| abstract_inverted_index.location | 90 |
| abstract_inverted_index.multiple | 47, 61 |
| abstract_inverted_index.outliers | 6, 21, 48, 62, 104, 142, 162 |
| abstract_inverted_index.presence | 45 |
| abstract_inverted_index.proposed | 30, 76, 95, 135, 155 |
| abstract_inverted_index.response | 65 |
| abstract_inverted_index.set.This | 52 |
| abstract_inverted_index.swamping | 169 |
| abstract_inverted_index.variable | 66 |
| abstract_inverted_index.comparing | 149 |
| abstract_inverted_index.detecting | 20, 161 |
| abstract_inverted_index.different | 117 |
| abstract_inverted_index.evaluated | 98 |
| abstract_inverted_index.existence | 4 |
| abstract_inverted_index.residuals | 87 |
| abstract_inverted_index.simulated | 130 |
| abstract_inverted_index.statistic | 58, 77, 96, 136, 156 |
| abstract_inverted_index.suspected | 36 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.Objective: | 2 |
| abstract_inverted_index.efficiency | 14 |
| abstract_inverted_index.influences | 12 |
| abstract_inverted_index.negligible | 164 |
| abstract_inverted_index.proportion | 101, 140 |
| abstract_inverted_index.regression | 26, 71 |
| abstract_inverted_index.simulation | 112 |
| abstract_inverted_index.successful | 42, 159 |
| abstract_inverted_index.calculating | 81 |
| abstract_inverted_index.investigate | 56 |
| abstract_inverted_index.performance | 92 |
| abstract_inverted_index.swamping.The | 111 |
| abstract_inverted_index.estimator.Few | 17 |
| abstract_inverted_index.parameter.The | 91 |
| abstract_inverted_index.model.Materials | 72 |
| abstract_inverted_index.methods.Conclusion: | 153 |
| abstract_inverted_index.contamination.Results: | 126 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.57752679 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |