Robust Consensus Tobit Kalman Filtering for Distributed State‐Saturated System Under Dynamic‐Disturbed Saturation Levels and Censored Measurements Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/rnc.70033
A robust consensus Tobit Kalman filtering (RCTKF) is derived in this paper for the distributed state‐saturated system suffering from dynamic‐disturbed saturation levels and censored measurements. A dynamic‐disturbance vector is selected to modify the classical state‐saturation model for the characterization of state saturations with dynamic‐disturbed saturation levels. Then, a distributed‐fusion cost function (DFCF) is founded on the maximum correntropy criterion (MCC) to enhance the accuracy of state estimates under non‐Gaussian system noise around the saturation and censoring regions through the fused adjusting factors. Next, the RCTKF is derived on the DFCF to obtain optimal global‐state estimates within limited consensus steps. A dynamic selection strategy is designed based on fused adjusting factors for the censoring probability and disturbance‐compensation probability to respectively enhance the one‐step prediction accuracy of state and measurement. In terms of the local state estimation, the upper bounds are deduced for the covariances of state one‐step prediction errors and filtering errors to obtain their analysis solutions, and then the filtering gains with two different expressions are derived on the DFCF to obtain the optimal local‐state estimates. The weighted average consensus‐based distributed fusion is considered for the double information pairs including state estimates and adjusting factors to obtain the optimal global‐state estimates within limited consensus steps. Finally, the numerical example and 3D‐target tracking example are chosen to verify the filtering performance of RCTKF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/rnc.70033
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033
- OA Status
- bronze
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411441634
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411441634Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/rnc.70033Digital Object Identifier
- Title
-
Robust Consensus Tobit Kalman Filtering for Distributed State‐Saturated System Under Dynamic‐Disturbed Saturation Levels and Censored MeasurementsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-19Full publication date if available
- Authors
-
Jiahao Zhang, Menggang Zhai, Xuehua Zhao, Su ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1002/rnc.70033Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033Direct OA link when available
- Concepts
-
Control theory (sociology), Kalman filter, Saturation (graph theory), State vector, Computer science, Tobit model, Mathematics, Mathematical optimization, Statistics, Artificial intelligence, Combinatorics, Classical mechanics, Physics, Control (management)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411441634 |
|---|---|
| doi | https://doi.org/10.1002/rnc.70033 |
| ids.doi | https://doi.org/10.1002/rnc.70033 |
| ids.openalex | https://openalex.org/W4411441634 |
| fwci | 0.0 |
| type | article |
| title | Robust Consensus Tobit Kalman Filtering for Distributed State‐Saturated System Under Dynamic‐Disturbed Saturation Levels and Censored Measurements |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T12879 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed Sensor Networks and Detection Algorithms |
| topics[2].id | https://openalex.org/T10046 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9962000250816345 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Stability and Control of Uncertain Systems |
| funders[0].id | https://openalex.org/F4320321543 |
| funders[0].ror | https://ror.org/0426zh255 |
| funders[0].display_name | China Postdoctoral Science Foundation |
| funders[1].id | https://openalex.org/F4320332587 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | Natural Science Foundation of Ningbo |
| is_xpac | False |
| apc_list.value | 4070 |
| apc_list.currency | USD |
| apc_list.value_usd | 4070 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C47446073 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6402451992034912 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[0].display_name | Control theory (sociology) |
| concepts[1].id | https://openalex.org/C157286648 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5931313633918762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[1].display_name | Kalman filter |
| concepts[2].id | https://openalex.org/C9930424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5410010814666748 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7426587 |
| concepts[2].display_name | Saturation (graph theory) |
| concepts[3].id | https://openalex.org/C2777798563 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46933072805404663 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7603916 |
| concepts[3].display_name | State vector |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4492571949958801 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C166866094 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43864336609840393 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1307251 |
| concepts[5].display_name | Tobit model |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.42110657691955566 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33394283056259155 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20815536379814148 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1273868978023529 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C74650414 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11397 |
| concepts[11].display_name | Classical mechanics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C2775924081 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[13].display_name | Control (management) |
| keywords[0].id | https://openalex.org/keywords/control-theory |
| keywords[0].score | 0.6402451992034912 |
| keywords[0].display_name | Control theory (sociology) |
| keywords[1].id | https://openalex.org/keywords/kalman-filter |
| keywords[1].score | 0.5931313633918762 |
| keywords[1].display_name | Kalman filter |
| keywords[2].id | https://openalex.org/keywords/saturation |
| keywords[2].score | 0.5410010814666748 |
| keywords[2].display_name | Saturation (graph theory) |
| keywords[3].id | https://openalex.org/keywords/state-vector |
| keywords[3].score | 0.46933072805404663 |
| keywords[3].display_name | State vector |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4492571949958801 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/tobit-model |
| keywords[5].score | 0.43864336609840393 |
| keywords[5].display_name | Tobit model |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.42110657691955566 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.33394283056259155 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.20815536379814148 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.1273868978023529 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1002/rnc.70033 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S156578089 |
| locations[0].source.issn | 1049-8923, 1099-1239 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1049-8923 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Robust and Nonlinear Control |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Robust and Nonlinear Control |
| locations[0].landing_page_url | https://doi.org/10.1002/rnc.70033 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100445487 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9421-2415 |
| authorships[0].author.display_name | Jiahao Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[0].affiliations[0].raw_affiliation_string | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210165339 |
| authorships[0].institutions[1].ror | https://ror.org/05nqg3g04 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ningbo Institute of Industrial Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiahao Zhang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| authorships[1].author.id | https://openalex.org/A5105729273 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Menggang Zhai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[1].affiliations[0].raw_affiliation_string | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| authorships[1].institutions[0].id | https://openalex.org/I19820366 |
| authorships[1].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210165339 |
| authorships[1].institutions[1].ror | https://ror.org/05nqg3g04 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Ningbo Institute of Industrial Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Menggang Zhai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| authorships[2].author.id | https://openalex.org/A5042568127 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0003-285X |
| authorships[2].author.display_name | Xuehua Zhao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I72565114 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I72565114 |
| authorships[2].institutions[0].ror | https://ror.org/04nraex26 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I72565114 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Luoyang Institute of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xuehua Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China |
| authorships[3].author.id | https://openalex.org/A5061478883 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2818-5233 |
| authorships[3].author.display_name | Su Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[3].affiliations[0].raw_affiliation_string | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210165339 |
| authorships[3].institutions[1].ror | https://ror.org/05nqg3g04 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Ningbo Institute of Industrial Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Su Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Consensus Tobit Kalman Filtering for Distributed State‐Saturated System Under Dynamic‐Disturbed Saturation Levels and Censored Measurements |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W4321845143, https://openalex.org/W4224251527, https://openalex.org/W2210856564, https://openalex.org/W2037570646, https://openalex.org/W3206065900, https://openalex.org/W3043006620, https://openalex.org/W2006887883, https://openalex.org/W1991038635, https://openalex.org/W2339306141, https://openalex.org/W2131787079 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1002/rnc.70033 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S156578089 |
| best_oa_location.source.issn | 1049-8923, 1099-1239 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1049-8923 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Robust and Nonlinear Control |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Robust and Nonlinear Control |
| best_oa_location.landing_page_url | https://doi.org/10.1002/rnc.70033 |
| primary_location.id | doi:10.1002/rnc.70033 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S156578089 |
| primary_location.source.issn | 1049-8923, 1099-1239 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1049-8923 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Robust and Nonlinear Control |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rnc.70033 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Robust and Nonlinear Control |
| primary_location.landing_page_url | https://doi.org/10.1002/rnc.70033 |
| publication_date | 2025-06-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3095699380, https://openalex.org/W3199933563, https://openalex.org/W3142381750, https://openalex.org/W4389762637, https://openalex.org/W4388294343, https://openalex.org/W4285206335, https://openalex.org/W3044553068, https://openalex.org/W4385277150, https://openalex.org/W4365517354, https://openalex.org/W4366144497, https://openalex.org/W4321609030, https://openalex.org/W3124995553, https://openalex.org/W4394994597, https://openalex.org/W3112349385, https://openalex.org/W3093404416, https://openalex.org/W2218617828, https://openalex.org/W2969545014, https://openalex.org/W4386470321, https://openalex.org/W2606519034, https://openalex.org/W4306911297, https://openalex.org/W4281768009, https://openalex.org/W3087323912, https://openalex.org/W4367595666, https://openalex.org/W4402668952, https://openalex.org/W4391651087, https://openalex.org/W2593877459, https://openalex.org/W2795834183, https://openalex.org/W2947184200, https://openalex.org/W2761746583, https://openalex.org/W2980477689, https://openalex.org/W4361804079, https://openalex.org/W4282922368 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 1, 26, 100 |
| abstract_inverted_index.a | 48 |
| abstract_inverted_index.In | 129 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 8, 29, 53, 86, 104, 183 |
| abstract_inverted_index.of | 40, 65, 125, 131, 144, 221 |
| abstract_inverted_index.on | 55, 88, 107, 168 |
| abstract_inverted_index.to | 31, 61, 91, 118, 152, 171, 196, 216 |
| abstract_inverted_index.The | 177 |
| abstract_inverted_index.and | 23, 75, 115, 127, 149, 157, 193, 210 |
| abstract_inverted_index.are | 139, 166, 214 |
| abstract_inverted_index.for | 13, 37, 111, 141, 185 |
| abstract_inverted_index.the | 14, 33, 38, 56, 63, 73, 79, 84, 89, 112, 121, 132, 136, 142, 159, 169, 173, 186, 198, 207, 218 |
| abstract_inverted_index.two | 163 |
| abstract_inverted_index.DFCF | 90, 170 |
| abstract_inverted_index.cost | 50 |
| abstract_inverted_index.from | 19 |
| abstract_inverted_index.then | 158 |
| abstract_inverted_index.this | 11 |
| abstract_inverted_index.with | 43, 162 |
| abstract_inverted_index.(MCC) | 60 |
| abstract_inverted_index.Next, | 83 |
| abstract_inverted_index.RCTKF | 85 |
| abstract_inverted_index.Then, | 47 |
| abstract_inverted_index.Tobit | 4 |
| abstract_inverted_index.based | 106 |
| abstract_inverted_index.fused | 80, 108 |
| abstract_inverted_index.gains | 161 |
| abstract_inverted_index.local | 133 |
| abstract_inverted_index.model | 36 |
| abstract_inverted_index.noise | 71 |
| abstract_inverted_index.pairs | 189 |
| abstract_inverted_index.paper | 12 |
| abstract_inverted_index.state | 41, 66, 126, 134, 145, 191 |
| abstract_inverted_index.terms | 130 |
| abstract_inverted_index.their | 154 |
| abstract_inverted_index.under | 68 |
| abstract_inverted_index.upper | 137 |
| abstract_inverted_index.(DFCF) | 52 |
| abstract_inverted_index.Kalman | 5 |
| abstract_inverted_index.RCTKF. | 222 |
| abstract_inverted_index.around | 72 |
| abstract_inverted_index.bounds | 138 |
| abstract_inverted_index.chosen | 215 |
| abstract_inverted_index.double | 187 |
| abstract_inverted_index.errors | 148, 151 |
| abstract_inverted_index.fusion | 182 |
| abstract_inverted_index.levels | 22 |
| abstract_inverted_index.modify | 32 |
| abstract_inverted_index.obtain | 92, 153, 172, 197 |
| abstract_inverted_index.robust | 2 |
| abstract_inverted_index.steps. | 99, 205 |
| abstract_inverted_index.system | 17, 70 |
| abstract_inverted_index.vector | 28 |
| abstract_inverted_index.verify | 217 |
| abstract_inverted_index.within | 96, 202 |
| abstract_inverted_index.(RCTKF) | 7 |
| abstract_inverted_index.average | 179 |
| abstract_inverted_index.deduced | 140 |
| abstract_inverted_index.derived | 9, 87, 167 |
| abstract_inverted_index.dynamic | 101 |
| abstract_inverted_index.enhance | 62, 120 |
| abstract_inverted_index.example | 209, 213 |
| abstract_inverted_index.factors | 110, 195 |
| abstract_inverted_index.founded | 54 |
| abstract_inverted_index.levels. | 46 |
| abstract_inverted_index.limited | 97, 203 |
| abstract_inverted_index.maximum | 57 |
| abstract_inverted_index.optimal | 93, 174, 199 |
| abstract_inverted_index.regions | 77 |
| abstract_inverted_index.through | 78 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Finally, | 206 |
| abstract_inverted_index.accuracy | 64, 124 |
| abstract_inverted_index.analysis | 155 |
| abstract_inverted_index.censored | 24 |
| abstract_inverted_index.designed | 105 |
| abstract_inverted_index.factors. | 82 |
| abstract_inverted_index.function | 51 |
| abstract_inverted_index.selected | 30 |
| abstract_inverted_index.strategy | 103 |
| abstract_inverted_index.tracking | 212 |
| abstract_inverted_index.weighted | 178 |
| abstract_inverted_index.adjusting | 81, 109, 194 |
| abstract_inverted_index.censoring | 76, 113 |
| abstract_inverted_index.classical | 34 |
| abstract_inverted_index.consensus | 3, 98, 204 |
| abstract_inverted_index.criterion | 59 |
| abstract_inverted_index.different | 164 |
| abstract_inverted_index.estimates | 67, 95, 192, 201 |
| abstract_inverted_index.filtering | 6, 150, 160, 219 |
| abstract_inverted_index.including | 190 |
| abstract_inverted_index.numerical | 208 |
| abstract_inverted_index.selection | 102 |
| abstract_inverted_index.suffering | 18 |
| abstract_inverted_index.considered | 184 |
| abstract_inverted_index.estimates. | 176 |
| abstract_inverted_index.one‐step | 122, 146 |
| abstract_inverted_index.prediction | 123, 147 |
| abstract_inverted_index.saturation | 21, 45, 74 |
| abstract_inverted_index.solutions, | 156 |
| abstract_inverted_index.3D‐target | 211 |
| abstract_inverted_index.correntropy | 58 |
| abstract_inverted_index.covariances | 143 |
| abstract_inverted_index.distributed | 15, 181 |
| abstract_inverted_index.estimation, | 135 |
| abstract_inverted_index.expressions | 165 |
| abstract_inverted_index.information | 188 |
| abstract_inverted_index.performance | 220 |
| abstract_inverted_index.probability | 114, 117 |
| abstract_inverted_index.saturations | 42 |
| abstract_inverted_index.measurement. | 128 |
| abstract_inverted_index.respectively | 119 |
| abstract_inverted_index.local‐state | 175 |
| abstract_inverted_index.measurements. | 25 |
| abstract_inverted_index.global‐state | 94, 200 |
| abstract_inverted_index.non‐Gaussian | 69 |
| abstract_inverted_index.characterization | 39 |
| abstract_inverted_index.consensus‐based | 180 |
| abstract_inverted_index.state‐saturated | 16 |
| abstract_inverted_index.state‐saturation | 35 |
| abstract_inverted_index.dynamic‐disturbed | 20, 44 |
| abstract_inverted_index.distributed‐fusion | 49 |
| abstract_inverted_index.dynamic‐disturbance | 27 |
| abstract_inverted_index.disturbance‐compensation | 116 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100445487 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210165339 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.10240543 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |