Robust CUR Decomposition: Theory and Imaging Applications Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2101.05231
This paper considers the use of Robust PCA in a CUR decomposition framework and applications thereof. Our main algorithms produce a robust version of column-row factorizations of matrices $\mathbf{D}=\mathbf{L}+\mathbf{S}$ where $\mathbf{L}$ is low-rank and $\mathbf{S}$ contains sparse outliers. These methods yield interpretable factorizations at low computational cost, and provide new CUR decompositions that are robust to sparse outliers, in contrast to previous methods. We consider two key imaging applications of Robust PCA: video foreground-background separation and face modeling. This paper examines the qualitative behavior of our Robust CUR decompositions on the benchmark videos and face datasets, and find that our method works as well as standard Robust PCA while being significantly faster. Additionally, we consider hybrid randomized and deterministic sampling methods which produce a compact CUR decomposition of a given matrix, and apply this to video sequences to produce canonical frames thereof.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2101.05231
- https://arxiv.org/pdf/2101.05231
- OA Status
- green
- Cited By
- 9
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3118450185
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3118450185Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2101.05231Digital Object Identifier
- Title
-
Robust CUR Decomposition: Theory and Imaging ApplicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-05Full publication date if available
- Authors
-
HanQin Cai, Keaton Hamm, Longxiu Huang, Deanna NeedellList of authors in order
- Landing page
-
https://arxiv.org/abs/2101.05231Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2101.05231Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2101.05231Direct OA link when available
- Concepts
-
Outlier, Decomposition, Robust principal component analysis, Benchmark (surveying), Matrix decomposition, Computer science, Rank (graph theory), Key (lock), Matrix (chemical analysis), Principal component analysis, Algorithm, Artificial intelligence, Mathematics, Pattern recognition (psychology), Combinatorics, Materials science, Eigenvalues and eigenvectors, Biology, Computer security, Quantum mechanics, Geography, Ecology, Composite material, Geodesy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3118450185 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2101.05231 |
| ids.doi | https://doi.org/10.48550/arxiv.2101.05231 |
| ids.mag | 3118450185 |
| ids.openalex | https://openalex.org/W3118450185 |
| fwci | 1.56837553 |
| type | preprint |
| title | Robust CUR Decomposition: Theory and Imaging Applications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T10860 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Speech and Audio Processing |
| topics[2].id | https://openalex.org/T10326 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Indoor and Outdoor Localization Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6800119876861572 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C124681953 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6151775121688843 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[1].display_name | Decomposition |
| concepts[2].id | https://openalex.org/C2777749129 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5922647714614868 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17148469 |
| concepts[2].display_name | Robust principal component analysis |
| concepts[3].id | https://openalex.org/C185798385 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5820503234863281 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[3].display_name | Benchmark (surveying) |
| concepts[4].id | https://openalex.org/C42355184 |
| concepts[4].level | 3 |
| concepts[4].score | 0.57004714012146 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1361088 |
| concepts[4].display_name | Matrix decomposition |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5471221804618835 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C164226766 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4923785924911499 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[6].display_name | Rank (graph theory) |
| concepts[7].id | https://openalex.org/C26517878 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4614905118942261 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[7].display_name | Key (lock) |
| concepts[8].id | https://openalex.org/C106487976 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42934757471084595 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[8].display_name | Matrix (chemical analysis) |
| concepts[9].id | https://openalex.org/C27438332 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4079713225364685 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[9].display_name | Principal component analysis |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40088197588920593 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38887161016464233 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3863459825515747 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3543296456336975 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1634804904460907 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C158693339 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[16].display_name | Eigenvalues and eigenvectors |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C38652104 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[18].display_name | Computer security |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C205649164 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[20].display_name | Geography |
| concepts[21].id | https://openalex.org/C18903297 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[21].display_name | Ecology |
| concepts[22].id | https://openalex.org/C159985019 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[22].display_name | Composite material |
| concepts[23].id | https://openalex.org/C13280743 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[23].display_name | Geodesy |
| concepts[24].id | https://openalex.org/C121332964 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[24].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.6800119876861572 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/decomposition |
| keywords[1].score | 0.6151775121688843 |
| keywords[1].display_name | Decomposition |
| keywords[2].id | https://openalex.org/keywords/robust-principal-component-analysis |
| keywords[2].score | 0.5922647714614868 |
| keywords[2].display_name | Robust principal component analysis |
| keywords[3].id | https://openalex.org/keywords/benchmark |
| keywords[3].score | 0.5820503234863281 |
| keywords[3].display_name | Benchmark (surveying) |
| keywords[4].id | https://openalex.org/keywords/matrix-decomposition |
| keywords[4].score | 0.57004714012146 |
| keywords[4].display_name | Matrix decomposition |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5471221804618835 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/rank |
| keywords[6].score | 0.4923785924911499 |
| keywords[6].display_name | Rank (graph theory) |
| keywords[7].id | https://openalex.org/keywords/key |
| keywords[7].score | 0.4614905118942261 |
| keywords[7].display_name | Key (lock) |
| keywords[8].id | https://openalex.org/keywords/matrix |
| keywords[8].score | 0.42934757471084595 |
| keywords[8].display_name | Matrix (chemical analysis) |
| keywords[9].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[9].score | 0.4079713225364685 |
| keywords[9].display_name | Principal component analysis |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.40088197588920593 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.38887161016464233 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3863459825515747 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.3543296456336975 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.1634804904460907 |
| keywords[14].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2101.05231 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2101.05231 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2101.05231 |
| locations[1].id | doi:10.48550/arxiv.2101.05231 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2101.05231 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103070466 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2937-1986 |
| authorships[0].author.display_name | HanQin Cai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | HanQin Cai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064380948 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0719-6045 |
| authorships[1].author.display_name | Keaton Hamm |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keaton Hamm |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035286718 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6610-9653 |
| authorships[2].author.display_name | Longxiu Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Longxiu Huang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024153474 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8058-8638 |
| authorships[3].author.display_name | Deanna Needell |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Deanna Needell |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2101.05231 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust CUR Decomposition: Theory and Imaging Applications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2991135868, https://openalex.org/W3037121946, https://openalex.org/W4387454008, https://openalex.org/W3174042135, https://openalex.org/W2890107589, https://openalex.org/W4283792950, https://openalex.org/W2549425886, https://openalex.org/W2124460284, https://openalex.org/W2802788970, https://openalex.org/W2563483704 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2101.05231 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2101.05231 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2101.05231 |
| primary_location.id | pmh:oai:arXiv.org:2101.05231 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2101.05231 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2101.05231 |
| publication_date | 2021-01-05 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2089135543, https://openalex.org/W2023782398, https://openalex.org/W2145962650, https://openalex.org/W2141696759, https://openalex.org/W3043060394, https://openalex.org/W2592541154, https://openalex.org/W2887843685, https://openalex.org/W2143688709, https://openalex.org/W2016527001, https://openalex.org/W2964321615, https://openalex.org/W1997201895, https://openalex.org/W3093365368, https://openalex.org/W2150907712, https://openalex.org/W2577272859, https://openalex.org/W2429127516, https://openalex.org/W2003690406, https://openalex.org/W2462481369, https://openalex.org/W2763005113, https://openalex.org/W2123921160, https://openalex.org/W2969530042, https://openalex.org/W3104624268, https://openalex.org/W2962872245, https://openalex.org/W2022139467, https://openalex.org/W2971963065, https://openalex.org/W2964138364, https://openalex.org/W2272541835, https://openalex.org/W1998269045, https://openalex.org/W3092528889, https://openalex.org/W2963455674, https://openalex.org/W2403076655, https://openalex.org/W1959255040, https://openalex.org/W2752230697, https://openalex.org/W2547648546, https://openalex.org/W2953288800, https://openalex.org/W2890486589, https://openalex.org/W2892000577, https://openalex.org/W2010811139, https://openalex.org/W2294644361 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 9, 20, 123, 128 |
| abstract_inverted_index.We | 63 |
| abstract_inverted_index.as | 102, 104 |
| abstract_inverted_index.at | 43 |
| abstract_inverted_index.in | 8, 58 |
| abstract_inverted_index.is | 31 |
| abstract_inverted_index.of | 5, 23, 26, 69, 84, 127 |
| abstract_inverted_index.on | 89 |
| abstract_inverted_index.to | 55, 60, 134, 137 |
| abstract_inverted_index.we | 113 |
| abstract_inverted_index.CUR | 10, 50, 87, 125 |
| abstract_inverted_index.Our | 16 |
| abstract_inverted_index.PCA | 7, 107 |
| abstract_inverted_index.and | 13, 33, 47, 75, 93, 96, 117, 131 |
| abstract_inverted_index.are | 53 |
| abstract_inverted_index.key | 66 |
| abstract_inverted_index.low | 44 |
| abstract_inverted_index.new | 49 |
| abstract_inverted_index.our | 85, 99 |
| abstract_inverted_index.the | 3, 81, 90 |
| abstract_inverted_index.two | 65 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.PCA: | 71 |
| abstract_inverted_index.This | 0, 78 |
| abstract_inverted_index.face | 76, 94 |
| abstract_inverted_index.find | 97 |
| abstract_inverted_index.main | 17 |
| abstract_inverted_index.that | 52, 98 |
| abstract_inverted_index.this | 133 |
| abstract_inverted_index.well | 103 |
| abstract_inverted_index.These | 38 |
| abstract_inverted_index.apply | 132 |
| abstract_inverted_index.being | 109 |
| abstract_inverted_index.cost, | 46 |
| abstract_inverted_index.given | 129 |
| abstract_inverted_index.paper | 1, 79 |
| abstract_inverted_index.video | 72, 135 |
| abstract_inverted_index.where | 29 |
| abstract_inverted_index.which | 121 |
| abstract_inverted_index.while | 108 |
| abstract_inverted_index.works | 101 |
| abstract_inverted_index.yield | 40 |
| abstract_inverted_index.Robust | 6, 70, 86, 106 |
| abstract_inverted_index.frames | 140 |
| abstract_inverted_index.hybrid | 115 |
| abstract_inverted_index.method | 100 |
| abstract_inverted_index.robust | 21, 54 |
| abstract_inverted_index.sparse | 36, 56 |
| abstract_inverted_index.videos | 92 |
| abstract_inverted_index.compact | 124 |
| abstract_inverted_index.faster. | 111 |
| abstract_inverted_index.imaging | 67 |
| abstract_inverted_index.matrix, | 130 |
| abstract_inverted_index.methods | 39, 120 |
| abstract_inverted_index.produce | 19, 122, 138 |
| abstract_inverted_index.provide | 48 |
| abstract_inverted_index.version | 22 |
| abstract_inverted_index.behavior | 83 |
| abstract_inverted_index.consider | 64, 114 |
| abstract_inverted_index.contains | 35 |
| abstract_inverted_index.contrast | 59 |
| abstract_inverted_index.examines | 80 |
| abstract_inverted_index.low-rank | 32 |
| abstract_inverted_index.matrices | 27 |
| abstract_inverted_index.methods. | 62 |
| abstract_inverted_index.previous | 61 |
| abstract_inverted_index.sampling | 119 |
| abstract_inverted_index.standard | 105 |
| abstract_inverted_index.thereof. | 15, 141 |
| abstract_inverted_index.benchmark | 91 |
| abstract_inverted_index.canonical | 139 |
| abstract_inverted_index.considers | 2 |
| abstract_inverted_index.datasets, | 95 |
| abstract_inverted_index.framework | 12 |
| abstract_inverted_index.modeling. | 77 |
| abstract_inverted_index.outliers, | 57 |
| abstract_inverted_index.outliers. | 37 |
| abstract_inverted_index.sequences | 136 |
| abstract_inverted_index.algorithms | 18 |
| abstract_inverted_index.column-row | 24 |
| abstract_inverted_index.randomized | 116 |
| abstract_inverted_index.separation | 74 |
| abstract_inverted_index.qualitative | 82 |
| abstract_inverted_index.$\mathbf{L}$ | 30 |
| abstract_inverted_index.$\mathbf{S}$ | 34 |
| abstract_inverted_index.applications | 14, 68 |
| abstract_inverted_index.Additionally, | 112 |
| abstract_inverted_index.computational | 45 |
| abstract_inverted_index.decomposition | 11, 126 |
| abstract_inverted_index.deterministic | 118 |
| abstract_inverted_index.interpretable | 41 |
| abstract_inverted_index.significantly | 110 |
| abstract_inverted_index.decompositions | 51, 88 |
| abstract_inverted_index.factorizations | 25, 42 |
| abstract_inverted_index.foreground-background | 73 |
| abstract_inverted_index.$\mathbf{D}=\mathbf{L}+\mathbf{S}$ | 28 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.77887071 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |