Robust Data-EnablEd Predictive Leading Cruise Control via Reachability Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.03897
Data-driven predictive control promises model-free wave-dampening strategies for Connected and Autonomous Vehicles (CAVs) in mixed traffic flow. However, its performance relies on data quality, which suffers from unknown noise and disturbances. This paper introduces a Robust Data-EnablEd Predictive Leading Cruise Control (RDeeP-LCC) method based on reachability analysis, aiming to achieve safe and optimal CAV control under bounded process noise and external disturbances. Precisely, the matrix zonotope set technique and Willems' Fundamental Lemma are employed to derive the over-approximated system dynamics directly from data, and a data-driven feedback control technique is utilized to obtain an additional feedback input for stability. We decouple the mixed platoon into an error system and a nominal system, where the error system provides data-driven reachability sets for the enhanced safety constraints in the nominal system. Finally, a data-driven predictive control framework is formulated in a tube-based control manner for robustness guarantees. Nonlinear simulations with noise-corrupted data demonstrate that the proposed method outperforms baseline methods in mitigating traffic waves.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.03897
- https://arxiv.org/pdf/2402.03897
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391631870
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391631870Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.03897Digital Object Identifier
- Title
-
Robust Data-EnablEd Predictive Leading Cruise Control via Reachability AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-06Full publication date if available
- Authors
-
Shuai Li, Chaoyi Chen, Haotian Zheng, Jiawei Wang, Qing Xu, Keqiang LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.03897Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.03897Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.03897Direct OA link when available
- Concepts
-
Reachability, Cruise, Cruise control, Computer science, Model predictive control, Control (management), Control theory (sociology), Artificial intelligence, Geology, Algorithm, OceanographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391631870 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.03897 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.03897 |
| ids.openalex | https://openalex.org/W4391631870 |
| fwci | |
| type | preprint |
| title | Robust Data-EnablEd Predictive Leading Cruise Control via Reachability Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9405999779701233 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.920799970626831 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136643341 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8741499185562134 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1361526 |
| concepts[0].display_name | Reachability |
| concepts[1].id | https://openalex.org/C2778821358 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6802539229393005 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2063640 |
| concepts[1].display_name | Cruise |
| concepts[2].id | https://openalex.org/C113168747 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5102329254150391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q507295 |
| concepts[2].display_name | Cruise control |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4572018086910248 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C172205157 |
| concepts[4].level | 3 |
| concepts[4].score | 0.42448025941848755 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[4].display_name | Model predictive control |
| concepts[5].id | https://openalex.org/C2775924081 |
| concepts[5].level | 2 |
| concepts[5].score | 0.40778130292892456 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[5].display_name | Control (management) |
| concepts[6].id | https://openalex.org/C47446073 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4025460183620453 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[6].display_name | Control theory (sociology) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.19072353839874268 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17760169506072998 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1212327778339386 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C111368507 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10737067461013794 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43518 |
| concepts[10].display_name | Oceanography |
| keywords[0].id | https://openalex.org/keywords/reachability |
| keywords[0].score | 0.8741499185562134 |
| keywords[0].display_name | Reachability |
| keywords[1].id | https://openalex.org/keywords/cruise |
| keywords[1].score | 0.6802539229393005 |
| keywords[1].display_name | Cruise |
| keywords[2].id | https://openalex.org/keywords/cruise-control |
| keywords[2].score | 0.5102329254150391 |
| keywords[2].display_name | Cruise control |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4572018086910248 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/model-predictive-control |
| keywords[4].score | 0.42448025941848755 |
| keywords[4].display_name | Model predictive control |
| keywords[5].id | https://openalex.org/keywords/control |
| keywords[5].score | 0.40778130292892456 |
| keywords[5].display_name | Control (management) |
| keywords[6].id | https://openalex.org/keywords/control-theory |
| keywords[6].score | 0.4025460183620453 |
| keywords[6].display_name | Control theory (sociology) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.19072353839874268 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.17760169506072998 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.1212327778339386 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/oceanography |
| keywords[10].score | 0.10737067461013794 |
| keywords[10].display_name | Oceanography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.03897 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.03897 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.03897 |
| locations[1].id | doi:10.48550/arxiv.2402.03897 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.03897 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101439331 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7031-0632 |
| authorships[0].author.display_name | Shuai Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Shuai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024374001 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2158-7969 |
| authorships[1].author.display_name | Chaoyi Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Chaoyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036265706 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3805-5547 |
| authorships[2].author.display_name | Haotian Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng, Haotian |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103002075 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-9797-2691 |
| authorships[3].author.display_name | Jiawei Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Jiawei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5069765087 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9066-9837 |
| authorships[4].author.display_name | Qing Xu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xu, Qing |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5031855986 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9333-7416 |
| authorships[5].author.display_name | Keqiang Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Keqiang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.03897 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Data-EnablEd Predictive Leading Cruise Control via Reachability Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9405999779701233 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W2136512912, https://openalex.org/W2127267268, https://openalex.org/W2156446763, https://openalex.org/W2744842631, https://openalex.org/W2067910792, https://openalex.org/W2928135228, https://openalex.org/W2604794472, https://openalex.org/W2150194458, https://openalex.org/W2080896647, https://openalex.org/W2556120871 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.03897 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.03897 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.03897 |
| primary_location.id | pmh:oai:arXiv.org:2402.03897 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.03897 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.03897 |
| publication_date | 2024-02-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 84, 109, 130, 138 |
| abstract_inverted_index.We | 99 |
| abstract_inverted_index.an | 93, 105 |
| abstract_inverted_index.in | 13, 125, 137, 158 |
| abstract_inverted_index.is | 89, 135 |
| abstract_inverted_index.on | 21, 44 |
| abstract_inverted_index.to | 48, 74, 91 |
| abstract_inverted_index.CAV | 53 |
| abstract_inverted_index.and | 9, 29, 51, 59, 68, 83, 108 |
| abstract_inverted_index.are | 72 |
| abstract_inverted_index.for | 7, 97, 120, 142 |
| abstract_inverted_index.its | 18 |
| abstract_inverted_index.set | 66 |
| abstract_inverted_index.the | 63, 76, 101, 113, 121, 126, 152 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.data | 22, 149 |
| abstract_inverted_index.from | 26, 81 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.safe | 50 |
| abstract_inverted_index.sets | 119 |
| abstract_inverted_index.that | 151 |
| abstract_inverted_index.with | 147 |
| abstract_inverted_index.Lemma | 71 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.data, | 82 |
| abstract_inverted_index.error | 106, 114 |
| abstract_inverted_index.flow. | 16 |
| abstract_inverted_index.input | 96 |
| abstract_inverted_index.mixed | 14, 102 |
| abstract_inverted_index.noise | 28, 58 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.under | 55 |
| abstract_inverted_index.where | 112 |
| abstract_inverted_index.which | 24 |
| abstract_inverted_index.(CAVs) | 12 |
| abstract_inverted_index.Cruise | 39 |
| abstract_inverted_index.Robust | 35 |
| abstract_inverted_index.aiming | 47 |
| abstract_inverted_index.derive | 75 |
| abstract_inverted_index.manner | 141 |
| abstract_inverted_index.matrix | 64 |
| abstract_inverted_index.method | 42, 154 |
| abstract_inverted_index.obtain | 92 |
| abstract_inverted_index.relies | 20 |
| abstract_inverted_index.safety | 123 |
| abstract_inverted_index.system | 78, 107, 115 |
| abstract_inverted_index.waves. | 161 |
| abstract_inverted_index.Control | 40 |
| abstract_inverted_index.Leading | 38 |
| abstract_inverted_index.achieve | 49 |
| abstract_inverted_index.bounded | 56 |
| abstract_inverted_index.control | 2, 54, 87, 133, 140 |
| abstract_inverted_index.methods | 157 |
| abstract_inverted_index.nominal | 110, 127 |
| abstract_inverted_index.optimal | 52 |
| abstract_inverted_index.platoon | 103 |
| abstract_inverted_index.process | 57 |
| abstract_inverted_index.suffers | 25 |
| abstract_inverted_index.system, | 111 |
| abstract_inverted_index.system. | 128 |
| abstract_inverted_index.traffic | 15, 160 |
| abstract_inverted_index.unknown | 27 |
| abstract_inverted_index.Finally, | 129 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Vehicles | 11 |
| abstract_inverted_index.Willems' | 69 |
| abstract_inverted_index.baseline | 156 |
| abstract_inverted_index.decouple | 100 |
| abstract_inverted_index.directly | 80 |
| abstract_inverted_index.dynamics | 79 |
| abstract_inverted_index.employed | 73 |
| abstract_inverted_index.enhanced | 122 |
| abstract_inverted_index.external | 60 |
| abstract_inverted_index.feedback | 86, 95 |
| abstract_inverted_index.promises | 3 |
| abstract_inverted_index.proposed | 153 |
| abstract_inverted_index.provides | 116 |
| abstract_inverted_index.quality, | 23 |
| abstract_inverted_index.utilized | 90 |
| abstract_inverted_index.zonotope | 65 |
| abstract_inverted_index.Connected | 8 |
| abstract_inverted_index.Nonlinear | 145 |
| abstract_inverted_index.analysis, | 46 |
| abstract_inverted_index.framework | 134 |
| abstract_inverted_index.technique | 67, 88 |
| abstract_inverted_index.Autonomous | 10 |
| abstract_inverted_index.Precisely, | 62 |
| abstract_inverted_index.Predictive | 37 |
| abstract_inverted_index.additional | 94 |
| abstract_inverted_index.formulated | 136 |
| abstract_inverted_index.introduces | 33 |
| abstract_inverted_index.mitigating | 159 |
| abstract_inverted_index.model-free | 4 |
| abstract_inverted_index.predictive | 1, 132 |
| abstract_inverted_index.robustness | 143 |
| abstract_inverted_index.stability. | 98 |
| abstract_inverted_index.strategies | 6 |
| abstract_inverted_index.tube-based | 139 |
| abstract_inverted_index.(RDeeP-LCC) | 41 |
| abstract_inverted_index.Data-driven | 0 |
| abstract_inverted_index.Fundamental | 70 |
| abstract_inverted_index.constraints | 124 |
| abstract_inverted_index.data-driven | 85, 117, 131 |
| abstract_inverted_index.demonstrate | 150 |
| abstract_inverted_index.guarantees. | 144 |
| abstract_inverted_index.outperforms | 155 |
| abstract_inverted_index.performance | 19 |
| abstract_inverted_index.simulations | 146 |
| abstract_inverted_index.Data-EnablEd | 36 |
| abstract_inverted_index.reachability | 45, 118 |
| abstract_inverted_index.disturbances. | 30, 61 |
| abstract_inverted_index.wave-dampening | 5 |
| abstract_inverted_index.noise-corrupted | 148 |
| abstract_inverted_index.over-approximated | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |