Robust Deep Learning-based 3D Segmentation and Morphological Analysis of Mitochondria using Soft X-ray Tomography Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.10.16.682919
Mitochondrial morphology is crucial for cellular function, but large-scale analysis is limited by challenges in high-resolution imaging and segmentation. MitoXRNet, a compact 3D deep-learning model, efficiently segments mitochondria and nuclei from Soft X-ray Tomography data using multi-axis slicing, Sobel-based boundary enhancement, and combined BCE–Robust Dice loss. With 1.4M parameters, it achieves a Dice score of 73.8% on INS-1E cells, outperforming existing models. Automated analysis indicated that glucose induced larger mitochondria and higher matrix density, and that GIP and GKA induced smaller and denser mitochondria, highlighting previously unreported β-cell mitochondrial remodeling. MitoXRNet allows for scalable profiling of organelle-level morpho-biophysical data. Highlights A data-efficient method for 3D segmentation of mitochondria and nucleus from Soft X-ray tomograms. Incorporates domain-specific Sobel filter-based preprocessing to improve segmentation accuracy and quality under imperfect or noisy labels. Enables rapid and automated analysis of mitochondrial morphology, facilitating quantitative assessment of pharmacological effects on cellular ultrastructure. Graphical Abstract
Related Topics
- Type
- preprint
- Landing Page
- https://doi.org/10.1101/2025.10.16.682919
- https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdf
- OA Status
- green
- References
- 35
- OpenAlex ID
- https://openalex.org/W4415288575
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415288575Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.10.16.682919Digital Object Identifier
- Title
-
Robust Deep Learning-based 3D Segmentation and Morphological Analysis of Mitochondria using Soft X-ray TomographyWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-17Full publication date if available
- Authors
-
Arun Kumar Yadav, Aneesh Deshmukh, Pushkar Bharadwaj, Anuj Baliyan, Kate L. White, Jitin SinglaList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.10.16.682919Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415288575 |
|---|---|
| doi | https://doi.org/10.1101/2025.10.16.682919 |
| ids.doi | https://doi.org/10.1101/2025.10.16.682919 |
| ids.openalex | https://openalex.org/W4415288575 |
| fwci | 0.0 |
| type | preprint |
| title | Robust Deep Learning-based 3D Segmentation and Morphological Analysis of Mitochondria using Soft X-ray Tomography |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9818999767303467 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9567999839782715 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T10052 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9532999992370605 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.1101/2025.10.16.682919 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.10.16.682919 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101866097 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2531-958X |
| authorships[0].author.display_name | Arun Kumar Yadav |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Arun Yadav |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036558872 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7314-7308 |
| authorships[1].author.display_name | Aneesh Deshmukh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aneesh Deshmukh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5037491867 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Pushkar Bharadwaj |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pushkar Bharadwaj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5120038199 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Anuj Baliyan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anuj Baliyan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5089374061 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8894-9621 |
| authorships[4].author.display_name | Kate L. White |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kate L White |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5001845207 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6225-0783 |
| authorships[5].author.display_name | Jitin Singla |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jitin Singla |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Robust Deep Learning-based 3D Segmentation and Morphological Analysis of Mitochondria using Soft X-ray Tomography |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-19T23:35:23.961156 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9818999767303467 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.10.16.682919 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.10.16.682919 |
| primary_location.id | doi:10.1101/2025.10.16.682919 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/10/17/2025.10.16.682919.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.10.16.682919 |
| publication_date | 2025-10-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3209746740, https://openalex.org/W2119244755, https://openalex.org/W2036004254, https://openalex.org/W3112952736, https://openalex.org/W4211082830, https://openalex.org/W1897303836, https://openalex.org/W4205174400, https://openalex.org/W3111521801, https://openalex.org/W4394742545, https://openalex.org/W3089134597, https://openalex.org/W2949493305, https://openalex.org/W4220900698, https://openalex.org/W4403746535, https://openalex.org/W4406015419, https://openalex.org/W4393148672, https://openalex.org/W3201820946, https://openalex.org/W3027419479, https://openalex.org/W4221017207, https://openalex.org/W4412127810, https://openalex.org/W4413840636, https://openalex.org/W4403977865, https://openalex.org/W3014974815, https://openalex.org/W2795178522, https://openalex.org/W3140411326, https://openalex.org/W2789504060, https://openalex.org/W4385072826, https://openalex.org/W4385072473, https://openalex.org/W3012297845, https://openalex.org/W2128370471, https://openalex.org/W2785673697, https://openalex.org/W2295374976, https://openalex.org/W2029101220, https://openalex.org/W4409053453, https://openalex.org/W2013148778, https://openalex.org/W2089560759 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 101 |
| abstract_inverted_index.a | 21, 52 |
| abstract_inverted_index.3D | 23, 105 |
| abstract_inverted_index.by | 13 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.is | 3, 11 |
| abstract_inverted_index.it | 50 |
| abstract_inverted_index.of | 55, 96, 107, 136, 142 |
| abstract_inverted_index.on | 57, 145 |
| abstract_inverted_index.or | 128 |
| abstract_inverted_index.to | 120 |
| abstract_inverted_index.GIP | 77 |
| abstract_inverted_index.GKA | 79 |
| abstract_inverted_index.and | 18, 29, 42, 71, 75, 78, 82, 109, 124, 133 |
| abstract_inverted_index.but | 8 |
| abstract_inverted_index.for | 5, 93, 104 |
| abstract_inverted_index.1.4M | 48 |
| abstract_inverted_index.Dice | 45, 53 |
| abstract_inverted_index.Soft | 32, 112 |
| abstract_inverted_index.With | 47 |
| abstract_inverted_index.data | 35 |
| abstract_inverted_index.from | 31, 111 |
| abstract_inverted_index.that | 66, 76 |
| abstract_inverted_index.73.8% | 56 |
| abstract_inverted_index.Sobel | 117 |
| abstract_inverted_index.X-ray | 33, 113 |
| abstract_inverted_index.data. | 99 |
| abstract_inverted_index.loss. | 46 |
| abstract_inverted_index.noisy | 129 |
| abstract_inverted_index.rapid | 132 |
| abstract_inverted_index.score | 54 |
| abstract_inverted_index.under | 126 |
| abstract_inverted_index.using | 36 |
| abstract_inverted_index.INS-1E | 58 |
| abstract_inverted_index.allows | 92 |
| abstract_inverted_index.cells, | 59 |
| abstract_inverted_index.denser | 83 |
| abstract_inverted_index.higher | 72 |
| abstract_inverted_index.larger | 69 |
| abstract_inverted_index.matrix | 73 |
| abstract_inverted_index.method | 103 |
| abstract_inverted_index.model, | 25 |
| abstract_inverted_index.nuclei | 30 |
| abstract_inverted_index.Enables | 131 |
| abstract_inverted_index.compact | 22 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.effects | 144 |
| abstract_inverted_index.glucose | 67 |
| abstract_inverted_index.imaging | 17 |
| abstract_inverted_index.improve | 121 |
| abstract_inverted_index.induced | 68, 80 |
| abstract_inverted_index.labels. | 130 |
| abstract_inverted_index.limited | 12 |
| abstract_inverted_index.models. | 62 |
| abstract_inverted_index.nucleus | 110 |
| abstract_inverted_index.quality | 125 |
| abstract_inverted_index.smaller | 81 |
| abstract_inverted_index.β-cell | 88 |
| abstract_inverted_index.Abstract | 0, 149 |
| abstract_inverted_index.accuracy | 123 |
| abstract_inverted_index.achieves | 51 |
| abstract_inverted_index.analysis | 10, 64, 135 |
| abstract_inverted_index.boundary | 40 |
| abstract_inverted_index.cellular | 6, 146 |
| abstract_inverted_index.combined | 43 |
| abstract_inverted_index.density, | 74 |
| abstract_inverted_index.existing | 61 |
| abstract_inverted_index.scalable | 94 |
| abstract_inverted_index.segments | 27 |
| abstract_inverted_index.slicing, | 38 |
| abstract_inverted_index.Automated | 63 |
| abstract_inverted_index.Graphical | 148 |
| abstract_inverted_index.MitoXRNet | 91 |
| abstract_inverted_index.automated | 134 |
| abstract_inverted_index.function, | 7 |
| abstract_inverted_index.imperfect | 127 |
| abstract_inverted_index.indicated | 65 |
| abstract_inverted_index.profiling | 95 |
| abstract_inverted_index.Highlights | 100 |
| abstract_inverted_index.MitoXRNet, | 20 |
| abstract_inverted_index.Tomography | 34 |
| abstract_inverted_index.assessment | 141 |
| abstract_inverted_index.challenges | 14 |
| abstract_inverted_index.morphology | 2 |
| abstract_inverted_index.multi-axis | 37 |
| abstract_inverted_index.previously | 86 |
| abstract_inverted_index.tomograms. | 114 |
| abstract_inverted_index.unreported | 87 |
| abstract_inverted_index.Sobel-based | 39 |
| abstract_inverted_index.efficiently | 26 |
| abstract_inverted_index.large-scale | 9 |
| abstract_inverted_index.morphology, | 138 |
| abstract_inverted_index.parameters, | 49 |
| abstract_inverted_index.remodeling. | 90 |
| abstract_inverted_index.BCE–Robust | 44 |
| abstract_inverted_index.Incorporates | 115 |
| abstract_inverted_index.enhancement, | 41 |
| abstract_inverted_index.facilitating | 139 |
| abstract_inverted_index.filter-based | 118 |
| abstract_inverted_index.highlighting | 85 |
| abstract_inverted_index.mitochondria | 28, 70, 108 |
| abstract_inverted_index.quantitative | 140 |
| abstract_inverted_index.segmentation | 106, 122 |
| abstract_inverted_index.Mitochondrial | 1 |
| abstract_inverted_index.deep-learning | 24 |
| abstract_inverted_index.mitochondria, | 84 |
| abstract_inverted_index.mitochondrial | 89, 137 |
| abstract_inverted_index.outperforming | 60 |
| abstract_inverted_index.preprocessing | 119 |
| abstract_inverted_index.segmentation. | 19 |
| abstract_inverted_index.data-efficient | 102 |
| abstract_inverted_index.domain-specific | 116 |
| abstract_inverted_index.high-resolution | 16 |
| abstract_inverted_index.organelle-level | 97 |
| abstract_inverted_index.pharmacological | 143 |
| abstract_inverted_index.ultrastructure. | 147 |
| abstract_inverted_index.morpho-biophysical | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.65779973 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |