Robust deep learning-based gait event detection across various pathologies Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0288555
The correct estimation of gait events is essential for the interpretation and calculation of 3D gait analysis (3DGA) data. Depending on the severity of the underlying pathology and the availability of force plates, gait events can be set either manually by trained clinicians or detected by automated event detection algorithms. The downside of manually estimated events is the tedious and time-intensive work which leads to subjective assessments. For automated event detection algorithms, the drawback is, that there is no standardized method available. Algorithms show varying robustness and accuracy on different pathologies and are often dependent on setup or pathology-specific thresholds. In this paper, we aim at closing this gap by introducing a novel deep learning-based gait event detection algorithm called IntellEvent , which shows to be accurate and robust across multiple pathologies. For this study, we utilized a retrospective clinical 3DGA dataset of 1211 patients with four different pathologies (malrotation deformities of the lower limbs, club foot, infantile cerebral palsy (ICP), and ICP with only drop foot characteristics) and 61 healthy controls. We propose a recurrent neural network architecture based on long-short term memory (LSTM) and trained it with 3D position and velocity information to predict initial contact (IC) and foot off (FO) events. We compared IntellEvent to a state-of-the-art heuristic approach and a machine learning method called DeepEvent. IntellEvent outperforms both methods and detects IC events on average within 5.4 ms and FO events within 11.3 ms with a detection rate of ≥ 99% and ≥ 95%, respectively. Our investigation on generalizability across laboratories suggests that models trained on data from a different laboratory need to be applied with care due to setup variations or differences in capturing frequencies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0288555
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printable
- OA Status
- gold
- Cited By
- 14
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385757711
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385757711Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0288555Digital Object Identifier
- Title
-
Robust deep learning-based gait event detection across various pathologiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-11Full publication date if available
- Authors
-
Bernhard Dumphart, Djordje Slijepčević, Matthias Zeppelzauer, Andreas Kranzl, Fabian Unglaube, Arnold Baca, Brian HorsakList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0288555Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printableDirect OA link when available
- Concepts
-
Artificial intelligence, Computer science, Gait, Machine learning, Deep learning, Gait analysis, Robustness (evolution), Foot drop, Pattern recognition (psychology), Physical medicine and rehabilitation, Medicine, Chemistry, Gene, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 6Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385757711 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0288555 |
| ids.doi | https://doi.org/10.1371/journal.pone.0288555 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37566568 |
| ids.openalex | https://openalex.org/W4385757711 |
| fwci | 5.29056571 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012189 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Retrospective Studies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001696 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Biomechanical Phenomena |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D005684 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Gait |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D002547 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Cerebral Palsy |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000077321 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Deep Learning |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012189 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Retrospective Studies |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001696 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Biomechanical Phenomena |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D005684 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Gait |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D002547 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Cerebral Palsy |
| type | article |
| title | Robust deep learning-based gait event detection across various pathologies |
| awards[0].id | https://openalex.org/G3407103867 |
| awards[0].funder_id | https://openalex.org/F4320319698 |
| awards[0].display_name | |
| awards[0].funder_award_id | LSC18-018 |
| awards[0].funder_display_name | Gesellschaft für Forschungsförderung Niederösterreich |
| biblio.issue | 8 |
| biblio.volume | 18 |
| biblio.last_page | e0288555 |
| biblio.first_page | e0288555 |
| topics[0].id | https://openalex.org/T11097 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2738 |
| topics[0].subfield.display_name | Psychiatry and Mental health |
| topics[0].display_name | Cerebral Palsy and Movement Disorders |
| topics[1].id | https://openalex.org/T10114 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3612 |
| topics[1].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[1].display_name | Balance, Gait, and Falls Prevention |
| topics[2].id | https://openalex.org/T11227 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetic Foot Ulcer Assessment and Management |
| funders[0].id | https://openalex.org/F4320319698 |
| funders[0].ror | |
| funders[0].display_name | Gesellschaft für Forschungsförderung Niederösterreich |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6630523800849915 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6401179432868958 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C151800584 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6014426946640015 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2370000 |
| concepts[2].display_name | Gait |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5038077235221863 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48644208908081055 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C173906292 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48591700196266174 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1493441 |
| concepts[5].display_name | Gait analysis |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4608897566795349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C2780748539 |
| concepts[7].level | 2 |
| concepts[7].score | 0.453155517578125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1942814 |
| concepts[7].display_name | Foot drop |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3634752035140991 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C99508421 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2607273459434509 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[9].display_name | Physical medicine and rehabilitation |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.19740504026412964 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C104317684 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[12].display_name | Gene |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6630523800849915 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6401179432868958 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/gait |
| keywords[2].score | 0.6014426946640015 |
| keywords[2].display_name | Gait |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5038077235221863 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.48644208908081055 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/gait-analysis |
| keywords[5].score | 0.48591700196266174 |
| keywords[5].display_name | Gait analysis |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.4608897566795349 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/foot-drop |
| keywords[7].score | 0.453155517578125 |
| keywords[7].display_name | Foot drop |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.3634752035140991 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[9].score | 0.2607273459434509 |
| keywords[9].display_name | Physical medicine and rehabilitation |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.19740504026412964 |
| keywords[10].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0288555 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0288555 |
| locations[1].id | pmid:37566568 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37566568 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10420363 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10420363/pdf/pone.0288555.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS One |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10420363 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5003846573 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5796-9910 |
| authorships[0].author.display_name | Bernhard Dumphart |
| authorships[0].countries | AT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[0].affiliations[0].raw_affiliation_string | Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I25485817 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Health Sciences, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I25485817 |
| authorships[0].affiliations[2].raw_affiliation_string | Center for Digital Health & Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[0].institutions[0].id | https://openalex.org/I25485817 |
| authorships[0].institutions[0].ror | https://ror.org/039a2re55 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25485817 |
| authorships[0].institutions[0].country_code | AT |
| authorships[0].institutions[0].display_name | St. Pölten University of Applied Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I129774422 |
| authorships[0].institutions[1].ror | https://ror.org/03prydq77 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I129774422 |
| authorships[0].institutions[1].country_code | AT |
| authorships[0].institutions[1].display_name | University of Vienna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bernhard Dumphart |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Center for Digital Health & Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria, Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria, Institute of Health Sciences, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[1].author.id | https://openalex.org/A5055814440 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2295-7466 |
| authorships[1].author.display_name | Djordje Slijepčević |
| authorships[1].countries | AT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25485817 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Creative\Media/Technologies, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[1].institutions[0].id | https://openalex.org/I25485817 |
| authorships[1].institutions[0].ror | https://ror.org/039a2re55 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25485817 |
| authorships[1].institutions[0].country_code | AT |
| authorships[1].institutions[0].display_name | St. Pölten University of Applied Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Djordje Slijepcevic |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute of Creative\Media/Technologies, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[2].author.id | https://openalex.org/A5060926433 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0413-4746 |
| authorships[2].author.display_name | Matthias Zeppelzauer |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25485817 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Creative\Media/Technologies, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[2].institutions[0].id | https://openalex.org/I25485817 |
| authorships[2].institutions[0].ror | https://ror.org/039a2re55 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25485817 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | St. Pölten University of Applied Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthias Zeppelzauer |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Institute of Creative\Media/Technologies, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[3].author.id | https://openalex.org/A5070020591 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1665-6958 |
| authorships[3].author.display_name | Andreas Kranzl |
| authorships[3].countries | AT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210126883 |
| authorships[3].affiliations[0].raw_affiliation_string | Laboratory of Gait and Movement Analysis, Orthopaedic Hospital Vienna-Speising, Vienna, Austria |
| authorships[3].institutions[0].id | https://openalex.org/I4210126883 |
| authorships[3].institutions[0].ror | https://ror.org/02cf89s21 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210126883 |
| authorships[3].institutions[0].country_code | AT |
| authorships[3].institutions[0].display_name | Orthopaedic Hospital Speising |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andreas Kranzl |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Laboratory of Gait and Movement Analysis, Orthopaedic Hospital Vienna-Speising, Vienna, Austria |
| authorships[4].author.id | https://openalex.org/A5054288371 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fabian Unglaube |
| authorships[4].countries | AT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210126883 |
| authorships[4].affiliations[0].raw_affiliation_string | Laboratory of Gait and Movement Analysis, Orthopaedic Hospital Vienna-Speising, Vienna, Austria |
| authorships[4].institutions[0].id | https://openalex.org/I4210126883 |
| authorships[4].institutions[0].ror | https://ror.org/02cf89s21 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210126883 |
| authorships[4].institutions[0].country_code | AT |
| authorships[4].institutions[0].display_name | Orthopaedic Hospital Speising |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fabian Unglaube |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Laboratory of Gait and Movement Analysis, Orthopaedic Hospital Vienna-Speising, Vienna, Austria |
| authorships[5].author.id | https://openalex.org/A5028675240 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1704-0290 |
| authorships[5].author.display_name | Arnold Baca |
| authorships[5].countries | AT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[5].affiliations[0].raw_affiliation_string | Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria |
| authorships[5].institutions[0].id | https://openalex.org/I129774422 |
| authorships[5].institutions[0].ror | https://ror.org/03prydq77 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I129774422 |
| authorships[5].institutions[0].country_code | AT |
| authorships[5].institutions[0].display_name | University of Vienna |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Arnold Baca |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria |
| authorships[6].author.id | https://openalex.org/A5081850574 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9296-3212 |
| authorships[6].author.display_name | Brian Horsak |
| authorships[6].countries | AT |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25485817 |
| authorships[6].affiliations[0].raw_affiliation_string | Center for Digital Health & Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I25485817 |
| authorships[6].affiliations[1].raw_affiliation_string | Institute of Health Sciences, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| authorships[6].institutions[0].id | https://openalex.org/I25485817 |
| authorships[6].institutions[0].ror | https://ror.org/039a2re55 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25485817 |
| authorships[6].institutions[0].country_code | AT |
| authorships[6].institutions[0].display_name | St. Pölten University of Applied Sciences |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Brian Horsak |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Center for Digital Health & Social Innovation, St. Pölten University of Applied Sciences, St. Pölten, Austria, Institute of Health Sciences, St. Pölten University of Applied Sciences, St. Pölten, Austria |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust deep learning-based gait event detection across various pathologies |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11097 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2738 |
| primary_topic.subfield.display_name | Psychiatry and Mental health |
| primary_topic.display_name | Cerebral Palsy and Movement Disorders |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4223943233, https://openalex.org/W4312200629, https://openalex.org/W4360585206, https://openalex.org/W4364306694, https://openalex.org/W4380086463, https://openalex.org/W4225161397, https://openalex.org/W3014300295, https://openalex.org/W3164822677, https://openalex.org/W2795261237 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1371/journal.pone.0288555 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0288555 |
| primary_location.id | doi:10.1371/journal.pone.0288555 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288555&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0288555 |
| publication_date | 2023-08-11 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3135714996, https://openalex.org/W2986257949, https://openalex.org/W2095513541, https://openalex.org/W2952472882, https://openalex.org/W2071669616, https://openalex.org/W2112295121, https://openalex.org/W2082460657, https://openalex.org/W2027176182, https://openalex.org/W2155862341, https://openalex.org/W2017417990, https://openalex.org/W2079501369, https://openalex.org/W2944176346, https://openalex.org/W2546895388, https://openalex.org/W2911675408, https://openalex.org/W3027571299, https://openalex.org/W4305057572, https://openalex.org/W3207249719, https://openalex.org/W3200192749, https://openalex.org/W4238643046, https://openalex.org/W4300870773, https://openalex.org/W1833108637, https://openalex.org/W2912434184 |
| referenced_works_count | 22 |
| abstract_inverted_index., | 121 |
| abstract_inverted_index.a | 111, 137, 174, 208, 213, 239, 262 |
| abstract_inverted_index.3D | 14, 189 |
| abstract_inverted_index.61 | 169 |
| abstract_inverted_index.FO | 233 |
| abstract_inverted_index.IC | 225 |
| abstract_inverted_index.In | 100 |
| abstract_inverted_index.We | 172, 204 |
| abstract_inverted_index.at | 105 |
| abstract_inverted_index.be | 36, 125, 267 |
| abstract_inverted_index.by | 40, 45, 109 |
| abstract_inverted_index.in | 277 |
| abstract_inverted_index.is | 6, 56, 77 |
| abstract_inverted_index.it | 187 |
| abstract_inverted_index.ms | 231, 237 |
| abstract_inverted_index.no | 78 |
| abstract_inverted_index.of | 3, 13, 23, 30, 52, 142, 151, 242 |
| abstract_inverted_index.on | 20, 88, 95, 180, 227, 251, 259 |
| abstract_inverted_index.or | 43, 97, 275 |
| abstract_inverted_index.to | 64, 124, 194, 207, 266, 272 |
| abstract_inverted_index.we | 103, 135 |
| abstract_inverted_index.5.4 | 230 |
| abstract_inverted_index.99% | 244 |
| abstract_inverted_index.For | 67, 132 |
| abstract_inverted_index.ICP | 162 |
| abstract_inverted_index.Our | 249 |
| abstract_inverted_index.The | 0, 50 |
| abstract_inverted_index.aim | 104 |
| abstract_inverted_index.and | 11, 27, 59, 86, 91, 127, 161, 168, 185, 191, 199, 212, 223, 232, 245 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.can | 35 |
| abstract_inverted_index.due | 271 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.gap | 108 |
| abstract_inverted_index.is, | 74 |
| abstract_inverted_index.off | 201 |
| abstract_inverted_index.set | 37 |
| abstract_inverted_index.the | 9, 21, 24, 28, 57, 72, 152 |
| abstract_inverted_index.≥ | 243, 246 |
| abstract_inverted_index.(FO) | 202 |
| abstract_inverted_index.(IC) | 198 |
| abstract_inverted_index.11.3 | 236 |
| abstract_inverted_index.1211 | 143 |
| abstract_inverted_index.3DGA | 140 |
| abstract_inverted_index.95%, | 247 |
| abstract_inverted_index.both | 221 |
| abstract_inverted_index.care | 270 |
| abstract_inverted_index.club | 155 |
| abstract_inverted_index.data | 260 |
| abstract_inverted_index.deep | 113 |
| abstract_inverted_index.drop | 165 |
| abstract_inverted_index.foot | 166, 200 |
| abstract_inverted_index.four | 146 |
| abstract_inverted_index.from | 261 |
| abstract_inverted_index.gait | 4, 15, 33, 115 |
| abstract_inverted_index.need | 265 |
| abstract_inverted_index.only | 164 |
| abstract_inverted_index.rate | 241 |
| abstract_inverted_index.show | 83 |
| abstract_inverted_index.term | 182 |
| abstract_inverted_index.that | 75, 256 |
| abstract_inverted_index.this | 101, 107, 133 |
| abstract_inverted_index.with | 145, 163, 188, 238, 269 |
| abstract_inverted_index.work | 61 |
| abstract_inverted_index.based | 179 |
| abstract_inverted_index.data. | 18 |
| abstract_inverted_index.event | 47, 69, 116 |
| abstract_inverted_index.foot, | 156 |
| abstract_inverted_index.force | 31 |
| abstract_inverted_index.leads | 63 |
| abstract_inverted_index.lower | 153 |
| abstract_inverted_index.novel | 112 |
| abstract_inverted_index.often | 93 |
| abstract_inverted_index.palsy | 159 |
| abstract_inverted_index.setup | 96, 273 |
| abstract_inverted_index.shows | 123 |
| abstract_inverted_index.there | 76 |
| abstract_inverted_index.which | 62, 122 |
| abstract_inverted_index.(3DGA) | 17 |
| abstract_inverted_index.(ICP), | 160 |
| abstract_inverted_index.(LSTM) | 184 |
| abstract_inverted_index.across | 129, 253 |
| abstract_inverted_index.called | 119, 217 |
| abstract_inverted_index.either | 38 |
| abstract_inverted_index.events | 5, 34, 55, 226, 234 |
| abstract_inverted_index.limbs, | 154 |
| abstract_inverted_index.memory | 183 |
| abstract_inverted_index.method | 80, 216 |
| abstract_inverted_index.models | 257 |
| abstract_inverted_index.neural | 176 |
| abstract_inverted_index.paper, | 102 |
| abstract_inverted_index.robust | 128 |
| abstract_inverted_index.study, | 134 |
| abstract_inverted_index.within | 229, 235 |
| abstract_inverted_index.applied | 268 |
| abstract_inverted_index.average | 228 |
| abstract_inverted_index.closing | 106 |
| abstract_inverted_index.contact | 197 |
| abstract_inverted_index.correct | 1 |
| abstract_inverted_index.dataset | 141 |
| abstract_inverted_index.detects | 224 |
| abstract_inverted_index.events. | 203 |
| abstract_inverted_index.healthy | 170 |
| abstract_inverted_index.initial | 196 |
| abstract_inverted_index.machine | 214 |
| abstract_inverted_index.methods | 222 |
| abstract_inverted_index.network | 177 |
| abstract_inverted_index.plates, | 32 |
| abstract_inverted_index.predict | 195 |
| abstract_inverted_index.propose | 173 |
| abstract_inverted_index.tedious | 58 |
| abstract_inverted_index.trained | 41, 186, 258 |
| abstract_inverted_index.varying | 84 |
| abstract_inverted_index.accuracy | 87 |
| abstract_inverted_index.accurate | 126 |
| abstract_inverted_index.analysis | 16 |
| abstract_inverted_index.approach | 211 |
| abstract_inverted_index.cerebral | 158 |
| abstract_inverted_index.clinical | 139 |
| abstract_inverted_index.compared | 205 |
| abstract_inverted_index.detected | 44 |
| abstract_inverted_index.downside | 51 |
| abstract_inverted_index.drawback | 73 |
| abstract_inverted_index.learning | 215 |
| abstract_inverted_index.manually | 39, 53 |
| abstract_inverted_index.multiple | 130 |
| abstract_inverted_index.patients | 144 |
| abstract_inverted_index.position | 190 |
| abstract_inverted_index.severity | 22 |
| abstract_inverted_index.suggests | 255 |
| abstract_inverted_index.utilized | 136 |
| abstract_inverted_index.velocity | 192 |
| abstract_inverted_index.Depending | 19 |
| abstract_inverted_index.algorithm | 118 |
| abstract_inverted_index.automated | 46, 68 |
| abstract_inverted_index.capturing | 278 |
| abstract_inverted_index.controls. | 171 |
| abstract_inverted_index.dependent | 94 |
| abstract_inverted_index.detection | 48, 70, 117, 240 |
| abstract_inverted_index.different | 89, 147, 263 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.estimated | 54 |
| abstract_inverted_index.heuristic | 210 |
| abstract_inverted_index.infantile | 157 |
| abstract_inverted_index.pathology | 26 |
| abstract_inverted_index.recurrent | 175 |
| abstract_inverted_index.Algorithms | 82 |
| abstract_inverted_index.DeepEvent. | 218 |
| abstract_inverted_index.available. | 81 |
| abstract_inverted_index.clinicians | 42 |
| abstract_inverted_index.estimation | 2 |
| abstract_inverted_index.laboratory | 264 |
| abstract_inverted_index.long-short | 181 |
| abstract_inverted_index.robustness | 85 |
| abstract_inverted_index.subjective | 65 |
| abstract_inverted_index.underlying | 25 |
| abstract_inverted_index.variations | 274 |
| abstract_inverted_index.IntellEvent | 120, 206, 219 |
| abstract_inverted_index.algorithms, | 71 |
| abstract_inverted_index.algorithms. | 49 |
| abstract_inverted_index.calculation | 12 |
| abstract_inverted_index.deformities | 150 |
| abstract_inverted_index.differences | 276 |
| abstract_inverted_index.information | 193 |
| abstract_inverted_index.introducing | 110 |
| abstract_inverted_index.outperforms | 220 |
| abstract_inverted_index.pathologies | 90, 148 |
| abstract_inverted_index.thresholds. | 99 |
| abstract_inverted_index.(malrotation | 149 |
| abstract_inverted_index.architecture | 178 |
| abstract_inverted_index.assessments. | 66 |
| abstract_inverted_index.availability | 29 |
| abstract_inverted_index.frequencies. | 279 |
| abstract_inverted_index.laboratories | 254 |
| abstract_inverted_index.pathologies. | 131 |
| abstract_inverted_index.standardized | 79 |
| abstract_inverted_index.investigation | 250 |
| abstract_inverted_index.respectively. | 248 |
| abstract_inverted_index.retrospective | 138 |
| abstract_inverted_index.interpretation | 10 |
| abstract_inverted_index.learning-based | 114 |
| abstract_inverted_index.time-intensive | 60 |
| abstract_inverted_index.characteristics) | 167 |
| abstract_inverted_index.generalizability | 252 |
| abstract_inverted_index.state-of-the-art | 209 |
| abstract_inverted_index.pathology-specific | 98 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5003846573, https://openalex.org/A5054288371, https://openalex.org/A5060926433, https://openalex.org/A5070020591, https://openalex.org/A5081850574, https://openalex.org/A5028675240, https://openalex.org/A5055814440 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I129774422, https://openalex.org/I25485817, https://openalex.org/I4210126883 |
| citation_normalized_percentile.value | 0.93725814 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |