Robust Face Detection and Identification under Occlusion using MTCNN and RESNET50 Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.30537/sjet.v7i2.1499
In today's rapidly evolving world, where technology is progressing swiftly, there is an increasing demand for facial recognition systems. Technologies are similar to digital forensics in that they can recognize people by scanning faces. However, one key problem they confront is dealing with covered or occluded faces, which might restrict recognition of faces in real-world situations. To overcome this issue, we created a system that is capable of identifying individuals even when their faces are veiled. We used the face detector algorithm called Multi-Task Cascaded Convolutional Neural Network (MTCNN) for face detection with 99.8% accuracy. Further we have conducted feature extraction and pre-processing on our self-created dataset. Our project utilizes the power of deep learning model: Residual Network (ResNet50), the form of deep neural network architectures well-suited for the job of features extraction. These features are matched by using Cosine similarity with accuracy of 92%. By leveraging the capabilities in the deep learning algorithms, this project provides a robust solution for automating the recognition of partially occluded faces.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.30537/sjet.v7i2.1499
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406588761
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406588761Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.30537/sjet.v7i2.1499Digital Object Identifier
- Title
-
Robust Face Detection and Identification under Occlusion using MTCNN and RESNET50Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-19Full publication date if available
- Authors
-
E. Yasmin Abdul Wahab, Wajeeha Shafique, Haderbache Amir, Sajid Javed, Muhammad MaroufList of authors in order
- Landing page
-
https://doi.org/10.30537/sjet.v7i2.1499Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.30537/sjet.v7i2.1499Direct OA link when available
- Concepts
-
Identification (biology), Face (sociological concept), Occlusion, Artificial intelligence, Computer vision, Computer science, Philosophy, Medicine, Linguistics, Biology, Internal medicine, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406588761 |
|---|---|
| doi | https://doi.org/10.30537/sjet.v7i2.1499 |
| ids.doi | https://doi.org/10.30537/sjet.v7i2.1499 |
| ids.openalex | https://openalex.org/W4406588761 |
| fwci | 0.0 |
| type | article |
| title | Robust Face Detection and Identification under Occlusion using MTCNN and RESNET50 |
| biblio.issue | 2 |
| biblio.volume | 7 |
| biblio.last_page | 112 |
| biblio.first_page | 100 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9046000242233276 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116834253 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6846277713775635 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[0].display_name | Identification (biology) |
| concepts[1].id | https://openalex.org/C2779304628 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5393514633178711 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[1].display_name | Face (sociological concept) |
| concepts[2].id | https://openalex.org/C2776268601 |
| concepts[2].level | 2 |
| concepts[2].score | 0.49568164348602295 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q968808 |
| concepts[2].display_name | Occlusion |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4616168439388275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3588365316390991 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3575962483882904 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1713198721408844 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.14675650000572205 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C41895202 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10262569785118103 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[8].display_name | Linguistics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.09965077042579651 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05355086922645569 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C59822182 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[11].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/identification |
| keywords[0].score | 0.6846277713775635 |
| keywords[0].display_name | Identification (biology) |
| keywords[1].id | https://openalex.org/keywords/face |
| keywords[1].score | 0.5393514633178711 |
| keywords[1].display_name | Face (sociological concept) |
| keywords[2].id | https://openalex.org/keywords/occlusion |
| keywords[2].score | 0.49568164348602295 |
| keywords[2].display_name | Occlusion |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4616168439388275 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.3588365316390991 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.3575962483882904 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.1713198721408844 |
| keywords[6].display_name | Philosophy |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.14675650000572205 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/linguistics |
| keywords[8].score | 0.10262569785118103 |
| keywords[8].display_name | Linguistics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.09965077042579651 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.05355086922645569 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.30537/sjet.v7i2.1499 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201259 |
| locations[0].source.issn | 2616-7069, 2617-3115 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2616-7069 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sukkur IBA Journal of Emerging Technologies |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sukkur IBA Journal of Emerging Technologies |
| locations[0].landing_page_url | https://doi.org/10.30537/sjet.v7i2.1499 |
| locations[1].id | pmh:oai:doaj.org/article:7854e6b4eff74e29ab874ea79a0cd47b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sukkur IBA Journal of Emerging Technologies, Vol 7, Iss 2 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/7854e6b4eff74e29ab874ea79a0cd47b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5115936952 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | E. Yasmin Abdul Wahab |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Eiman Wahab |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115936953 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wajeeha Shafique |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Wajeeha Shafique |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061377723 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haderbache Amir |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Habiba Amir |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5071515463 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0036-2875 |
| authorships[3].author.display_name | Sajid Javed |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | None Sameena Javed |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5028328040 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Muhammad Marouf |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | None Muhammad Marouf |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.30537/sjet.v7i2.1499 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Face Detection and Identification under Occlusion using MTCNN and RESNET50 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9046000242233276 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2772917594, https://openalex.org/W2036807459, https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.30537/sjet.v7i2.1499 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201259 |
| best_oa_location.source.issn | 2616-7069, 2617-3115 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2616-7069 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sukkur IBA Journal of Emerging Technologies |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sukkur IBA Journal of Emerging Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.30537/sjet.v7i2.1499 |
| primary_location.id | doi:10.30537/sjet.v7i2.1499 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201259 |
| primary_location.source.issn | 2616-7069, 2617-3115 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2616-7069 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sukkur IBA Journal of Emerging Technologies |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sukkur IBA Journal of Emerging Technologies |
| primary_location.landing_page_url | https://doi.org/10.30537/sjet.v7i2.1499 |
| publication_date | 2025-01-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 62, 157 |
| abstract_inverted_index.By | 145 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 76 |
| abstract_inverted_index.an | 12 |
| abstract_inverted_index.by | 31, 137 |
| abstract_inverted_index.in | 25, 53, 149 |
| abstract_inverted_index.is | 7, 11, 40, 65 |
| abstract_inverted_index.of | 51, 67, 112, 121, 130, 143, 164 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.or | 44 |
| abstract_inverted_index.to | 22 |
| abstract_inverted_index.we | 60, 96 |
| abstract_inverted_index.Our | 107 |
| abstract_inverted_index.and | 101 |
| abstract_inverted_index.are | 20, 74, 135 |
| abstract_inverted_index.can | 28 |
| abstract_inverted_index.for | 15, 89, 127, 160 |
| abstract_inverted_index.job | 129 |
| abstract_inverted_index.key | 36 |
| abstract_inverted_index.one | 35 |
| abstract_inverted_index.our | 104 |
| abstract_inverted_index.the | 78, 110, 119, 128, 147, 150, 162 |
| abstract_inverted_index.92%. | 144 |
| abstract_inverted_index.deep | 113, 122, 151 |
| abstract_inverted_index.even | 70 |
| abstract_inverted_index.face | 79, 90 |
| abstract_inverted_index.form | 120 |
| abstract_inverted_index.have | 97 |
| abstract_inverted_index.that | 26, 64 |
| abstract_inverted_index.they | 27, 38 |
| abstract_inverted_index.this | 58, 154 |
| abstract_inverted_index.used | 77 |
| abstract_inverted_index.when | 71 |
| abstract_inverted_index.with | 42, 92, 141 |
| abstract_inverted_index.99.8% | 93 |
| abstract_inverted_index.These | 133 |
| abstract_inverted_index.faces | 52, 73 |
| abstract_inverted_index.might | 48 |
| abstract_inverted_index.power | 111 |
| abstract_inverted_index.their | 72 |
| abstract_inverted_index.there | 10 |
| abstract_inverted_index.using | 138 |
| abstract_inverted_index.where | 5 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.Cosine | 139 |
| abstract_inverted_index.Neural | 86 |
| abstract_inverted_index.called | 82 |
| abstract_inverted_index.demand | 14 |
| abstract_inverted_index.faces, | 46 |
| abstract_inverted_index.faces. | 33, 167 |
| abstract_inverted_index.facial | 16 |
| abstract_inverted_index.issue, | 59 |
| abstract_inverted_index.model: | 115 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.people | 30 |
| abstract_inverted_index.robust | 158 |
| abstract_inverted_index.system | 63 |
| abstract_inverted_index.world, | 4 |
| abstract_inverted_index.(MTCNN) | 88 |
| abstract_inverted_index.Further | 95 |
| abstract_inverted_index.Network | 87, 117 |
| abstract_inverted_index.capable | 66 |
| abstract_inverted_index.covered | 43 |
| abstract_inverted_index.created | 61 |
| abstract_inverted_index.dealing | 41 |
| abstract_inverted_index.digital | 23 |
| abstract_inverted_index.feature | 99 |
| abstract_inverted_index.matched | 136 |
| abstract_inverted_index.network | 124 |
| abstract_inverted_index.problem | 37 |
| abstract_inverted_index.project | 108, 155 |
| abstract_inverted_index.rapidly | 2 |
| abstract_inverted_index.similar | 21 |
| abstract_inverted_index.today's | 1 |
| abstract_inverted_index.veiled. | 75 |
| abstract_inverted_index.Cascaded | 84 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.Residual | 116 |
| abstract_inverted_index.accuracy | 142 |
| abstract_inverted_index.confront | 39 |
| abstract_inverted_index.dataset. | 106 |
| abstract_inverted_index.detector | 80 |
| abstract_inverted_index.evolving | 3 |
| abstract_inverted_index.features | 131, 134 |
| abstract_inverted_index.learning | 114, 152 |
| abstract_inverted_index.occluded | 45, 166 |
| abstract_inverted_index.overcome | 57 |
| abstract_inverted_index.provides | 156 |
| abstract_inverted_index.restrict | 49 |
| abstract_inverted_index.scanning | 32 |
| abstract_inverted_index.solution | 159 |
| abstract_inverted_index.swiftly, | 9 |
| abstract_inverted_index.systems. | 18 |
| abstract_inverted_index.utilizes | 109 |
| abstract_inverted_index.accuracy. | 94 |
| abstract_inverted_index.algorithm | 81 |
| abstract_inverted_index.conducted | 98 |
| abstract_inverted_index.detection | 91 |
| abstract_inverted_index.forensics | 24 |
| abstract_inverted_index.partially | 165 |
| abstract_inverted_index.recognize | 29 |
| abstract_inverted_index.Multi-Task | 83 |
| abstract_inverted_index.automating | 161 |
| abstract_inverted_index.extraction | 100 |
| abstract_inverted_index.increasing | 13 |
| abstract_inverted_index.leveraging | 146 |
| abstract_inverted_index.real-world | 54 |
| abstract_inverted_index.similarity | 140 |
| abstract_inverted_index.technology | 6 |
| abstract_inverted_index.(ResNet50), | 118 |
| abstract_inverted_index.algorithms, | 153 |
| abstract_inverted_index.extraction. | 132 |
| abstract_inverted_index.identifying | 68 |
| abstract_inverted_index.individuals | 69 |
| abstract_inverted_index.progressing | 8 |
| abstract_inverted_index.recognition | 17, 50, 163 |
| abstract_inverted_index.situations. | 55 |
| abstract_inverted_index.well-suited | 126 |
| abstract_inverted_index.Technologies | 19 |
| abstract_inverted_index.capabilities | 148 |
| abstract_inverted_index.self-created | 105 |
| abstract_inverted_index.Convolutional | 85 |
| abstract_inverted_index.architectures | 125 |
| abstract_inverted_index.pre-processing | 102 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.01297571 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |