Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-04768-w
Aiming to address the challenges of reduced detection accuracy in face mask applications due to mutual occlusion, lighting variations, and detection distance, this paper proposes a face mask detection algorithm tailored for complex environments. First, we construct a comprehensive face mask dataset. Then, based on the YOLOv8 architecture, we enhance the C2f module in the backbone network by incorporating depth-separable convolutions to better capture the color and texture features of the target. We also integrate the SENet attention mechanism to further optimize feature extraction efficiency. To improve the transmission of fine-grained face mask features within the network, we introduce context-aware convolutions in the Neck module, which facilitates the integration of contextual semantic information and enriches the feature details of small targets. Building on this, we design an enhanced detection head, DAM-Head, which amplifies target saliency and improves both target recognition and localization accuracy. Experimental results demonstrate that the proposed algorithm achieves a mean Average Precision (mAP) of 98.11% and a Frames Per Second (FPS) rate of 135.61 on the constructed dataset, outperforming other mainstream algorithms in both accuracy and real-time performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-04768-w
- https://www.nature.com/articles/s41598-025-04768-w.pdf
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411868805
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411868805Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-04768-wDigital Object Identifier
- Title
-
Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Yingjie Wei, Huili Li, Yuanfei He, Li Li, Qiongshuai Lyu, Yuchao YangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-04768-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-04768-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-04768-w.pdfDirect OA link when available
- Concepts
-
Computer science, Face (sociological concept), Context (archaeology), Artificial intelligence, Data science, Computer vision, Data mining, Biology, Social science, Paleontology, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411868805 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-04768-w |
| ids.doi | https://doi.org/10.1038/s41598-025-04768-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40594313 |
| ids.openalex | https://openalex.org/W4411868805 |
| fwci | 0.0 |
| type | article |
| title | Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutions |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 21350 |
| biblio.first_page | 21350 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9918000102043152 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T10331 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9901000261306763 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Video Surveillance and Tracking Methods |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7839828133583069 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779304628 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7040091156959534 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[1].display_name | Face (sociological concept) |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6568087339401245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43476125597953796 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3805064558982849 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36449939012527466 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32554590702056885 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.08463063836097717 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C36289849 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[8].display_name | Social science |
| concepts[9].id | https://openalex.org/C151730666 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[9].display_name | Paleontology |
| concepts[10].id | https://openalex.org/C144024400 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[10].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7839828133583069 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/face |
| keywords[1].score | 0.7040091156959534 |
| keywords[1].display_name | Face (sociological concept) |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6568087339401245 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.43476125597953796 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3805064558982849 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.36449939012527466 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.32554590702056885 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.08463063836097717 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-04768-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-04768-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-04768-w |
| locations[1].id | pmid:40594313 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40594313 |
| locations[2].id | pmh:oai:doaj.org/article:62892db5e4f747a3860523e349fa407b |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-14 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/62892db5e4f747a3860523e349fa407b |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12218034 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12218034 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5053976832 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0200-8973 |
| authorships[0].author.display_name | Yingjie Wei |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210093674 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210093674 |
| authorships[0].institutions[0].ror | https://ror.org/00jjkh886 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210093674 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhoukou Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingjie Wei |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[1].author.id | https://openalex.org/A5100786243 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7508-1122 |
| authorships[1].author.display_name | Huili Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151878197 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Software, Pingdingshan University, Pingdingshan, 467000, China. [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I151878197 |
| authorships[1].institutions[0].ror | https://ror.org/026c29h90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151878197 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Pingdingshan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huili Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Software, Pingdingshan University, Pingdingshan, 467000, China. [email protected]. |
| authorships[2].author.id | https://openalex.org/A5102602572 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yuanfei He |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210093674 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[2].institutions[0].id | https://openalex.org/I4210093674 |
| authorships[2].institutions[0].ror | https://ror.org/00jjkh886 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210093674 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhoukou Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yuanfei He |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[3].author.id | https://openalex.org/A5100361375 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3373-2999 |
| authorships[3].author.display_name | Li Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210093674 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4210093674 |
| authorships[3].institutions[0].ror | https://ror.org/00jjkh886 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210093674 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhoukou Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Information Engineering, Zhoukou Vocational College of Arts and Science, Zhoukou, 466000, China. |
| authorships[4].author.id | https://openalex.org/A5029986344 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qiongshuai Lyu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I151878197 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Software, Pingdingshan University, Pingdingshan, 467000, China. |
| authorships[4].institutions[0].id | https://openalex.org/I151878197 |
| authorships[4].institutions[0].ror | https://ror.org/026c29h90 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I151878197 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Pingdingshan University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qiongshuai Lyu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Software, Pingdingshan University, Pingdingshan, 467000, China. |
| authorships[5].author.id | https://openalex.org/A5057584787 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4674-4059 |
| authorships[5].author.display_name | Yuchao Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].raw_affiliation_string | Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5, Pingdingshan, 467000, China. [email protected]. |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I151878197 |
| authorships[5].affiliations[1].raw_affiliation_string | School of Software, Pingdingshan University, Pingdingshan, 467000, China. [email protected]. |
| authorships[5].institutions[0].id | https://openalex.org/I151878197 |
| authorships[5].institutions[0].ror | https://ror.org/026c29h90 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I151878197 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Pingdingshan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yu Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Henan International Joint Laboratory for Multidimensional Topology and Carcinogenic Characteristics Analysis of Atmospheric Particulate Matter PM2.5, Pingdingshan, 467000, China. [email protected]., School of Software, Pingdingshan University, Pingdingshan, 467000, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-04768-w.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust face mask detection in complex scenarios using YOLOv8 and context-aware convolutions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W2755342338, https://openalex.org/W2779427294, https://openalex.org/W2775347418, https://openalex.org/W2625805835, https://openalex.org/W2079911747, https://openalex.org/W3116076068, https://openalex.org/W3003936178, https://openalex.org/W2145652935, https://openalex.org/W2563206327, https://openalex.org/W2069885731 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-04768-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-04768-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-04768-w |
| primary_location.id | doi:10.1038/s41598-025-04768-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-04768-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-04768-w |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2975077293, https://openalex.org/W3014271510, https://openalex.org/W4239510810, https://openalex.org/W2024046085, https://openalex.org/W4382059335, https://openalex.org/W4324364131, https://openalex.org/W3142882742, https://openalex.org/W4313513500, https://openalex.org/W3214102424, https://openalex.org/W3162760148, https://openalex.org/W3045576536, https://openalex.org/W4316038645, https://openalex.org/W4214715042, https://openalex.org/W4321230314, https://openalex.org/W3206292509, https://openalex.org/W4360998009, https://openalex.org/W2565639579, https://openalex.org/W2963857746, https://openalex.org/W2752782242, https://openalex.org/W4313492663, https://openalex.org/W3026999132 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 25, 37, 151, 159 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.We | 72 |
| abstract_inverted_index.an | 126 |
| abstract_inverted_index.by | 57 |
| abstract_inverted_index.in | 9, 53, 101, 175 |
| abstract_inverted_index.of | 5, 69, 89, 109, 118, 156, 165 |
| abstract_inverted_index.on | 44, 122, 167 |
| abstract_inverted_index.to | 1, 14, 61, 79 |
| abstract_inverted_index.we | 35, 48, 97, 124 |
| abstract_inverted_index.C2f | 51 |
| abstract_inverted_index.Per | 161 |
| abstract_inverted_index.and | 19, 66, 113, 135, 140, 158, 178 |
| abstract_inverted_index.due | 13 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.the | 3, 45, 50, 54, 64, 70, 75, 87, 95, 102, 107, 115, 147, 168 |
| abstract_inverted_index.Neck | 103 |
| abstract_inverted_index.also | 73 |
| abstract_inverted_index.both | 137, 176 |
| abstract_inverted_index.face | 10, 26, 39, 91 |
| abstract_inverted_index.mask | 11, 27, 40, 92 |
| abstract_inverted_index.mean | 152 |
| abstract_inverted_index.rate | 164 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.(FPS) | 163 |
| abstract_inverted_index.(mAP) | 155 |
| abstract_inverted_index.SENet | 76 |
| abstract_inverted_index.Then, | 42 |
| abstract_inverted_index.based | 43 |
| abstract_inverted_index.color | 65 |
| abstract_inverted_index.head, | 129 |
| abstract_inverted_index.other | 172 |
| abstract_inverted_index.paper | 23 |
| abstract_inverted_index.small | 119 |
| abstract_inverted_index.this, | 123 |
| abstract_inverted_index.which | 105, 131 |
| abstract_inverted_index.135.61 | 166 |
| abstract_inverted_index.98.11% | 157 |
| abstract_inverted_index.Aiming | 0 |
| abstract_inverted_index.First, | 34 |
| abstract_inverted_index.Frames | 160 |
| abstract_inverted_index.Second | 162 |
| abstract_inverted_index.YOLOv8 | 46 |
| abstract_inverted_index.better | 62 |
| abstract_inverted_index.design | 125 |
| abstract_inverted_index.module | 52 |
| abstract_inverted_index.mutual | 15 |
| abstract_inverted_index.target | 133, 138 |
| abstract_inverted_index.within | 94 |
| abstract_inverted_index.Average | 153 |
| abstract_inverted_index.address | 2 |
| abstract_inverted_index.capture | 63 |
| abstract_inverted_index.complex | 32 |
| abstract_inverted_index.details | 117 |
| abstract_inverted_index.enhance | 49 |
| abstract_inverted_index.feature | 82, 116 |
| abstract_inverted_index.further | 80 |
| abstract_inverted_index.improve | 86 |
| abstract_inverted_index.module, | 104 |
| abstract_inverted_index.network | 56 |
| abstract_inverted_index.reduced | 6 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.target. | 71 |
| abstract_inverted_index.texture | 67 |
| abstract_inverted_index.Building | 121 |
| abstract_inverted_index.accuracy | 8, 177 |
| abstract_inverted_index.achieves | 150 |
| abstract_inverted_index.backbone | 55 |
| abstract_inverted_index.dataset, | 170 |
| abstract_inverted_index.dataset. | 41 |
| abstract_inverted_index.enhanced | 127 |
| abstract_inverted_index.enriches | 114 |
| abstract_inverted_index.features | 68, 93 |
| abstract_inverted_index.improves | 136 |
| abstract_inverted_index.lighting | 17 |
| abstract_inverted_index.network, | 96 |
| abstract_inverted_index.optimize | 81 |
| abstract_inverted_index.proposed | 148 |
| abstract_inverted_index.proposes | 24 |
| abstract_inverted_index.saliency | 134 |
| abstract_inverted_index.semantic | 111 |
| abstract_inverted_index.tailored | 30 |
| abstract_inverted_index.targets. | 120 |
| abstract_inverted_index.DAM-Head, | 130 |
| abstract_inverted_index.Precision | 154 |
| abstract_inverted_index.accuracy. | 142 |
| abstract_inverted_index.algorithm | 29, 149 |
| abstract_inverted_index.amplifies | 132 |
| abstract_inverted_index.attention | 77 |
| abstract_inverted_index.construct | 36 |
| abstract_inverted_index.detection | 7, 20, 28, 128 |
| abstract_inverted_index.distance, | 21 |
| abstract_inverted_index.integrate | 74 |
| abstract_inverted_index.introduce | 98 |
| abstract_inverted_index.mechanism | 78 |
| abstract_inverted_index.real-time | 179 |
| abstract_inverted_index.algorithms | 174 |
| abstract_inverted_index.challenges | 4 |
| abstract_inverted_index.contextual | 110 |
| abstract_inverted_index.extraction | 83 |
| abstract_inverted_index.mainstream | 173 |
| abstract_inverted_index.occlusion, | 16 |
| abstract_inverted_index.constructed | 169 |
| abstract_inverted_index.demonstrate | 145 |
| abstract_inverted_index.efficiency. | 84 |
| abstract_inverted_index.facilitates | 106 |
| abstract_inverted_index.information | 112 |
| abstract_inverted_index.integration | 108 |
| abstract_inverted_index.recognition | 139 |
| abstract_inverted_index.variations, | 18 |
| abstract_inverted_index.Experimental | 143 |
| abstract_inverted_index.applications | 12 |
| abstract_inverted_index.convolutions | 60, 100 |
| abstract_inverted_index.fine-grained | 90 |
| abstract_inverted_index.localization | 141 |
| abstract_inverted_index.performance. | 180 |
| abstract_inverted_index.transmission | 88 |
| abstract_inverted_index.architecture, | 47 |
| abstract_inverted_index.comprehensive | 38 |
| abstract_inverted_index.context-aware | 99 |
| abstract_inverted_index.environments. | 33 |
| abstract_inverted_index.incorporating | 58 |
| abstract_inverted_index.outperforming | 171 |
| abstract_inverted_index.depth-separable | 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.25549693 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |