Robust multivariate least angle regression Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.2306/scienceasia1513-1874.2017.43.056
The least angle regression selection (LARS) algorithms that use the classical sample means, variances, and correlations between the original variables are very sensitive to the presence of outliers and other contamination.To remedy this problem, a simple modification of this algorithm is to replace the non-robust estimates with their robust counterparts.Khan, Van Aelst, and Zamar employed the robust correlation for winsorized data based on adjusted winsorization correlation as a robust bivariate correlation approach for plug-in LARS.However, the robust least angle regression selection has some drawbacks in the presence of multivariate outliers.We propose to incorporate the Olive and Hawkins reweighted and fast consistent high breakdown estimator into the robust plug-in LARS method based on correlations.Our proposed method is tested by using a numerical example and a simulation study.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2306/scienceasia1513-1874.2017.43.056
- http://www.scienceasia.org/2017.43.n1/scias43_56.pdf
- OA Status
- diamond
- Cited By
- 5
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2618405501
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2618405501Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2306/scienceasia1513-1874.2017.43.056Digital Object Identifier
- Title
-
Robust multivariate least angle regressionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Hassan S. Uraibi, Habshah Midi, Sohel RanaList of authors in order
- Landing page
-
https://doi.org/10.2306/scienceasia1513-1874.2017.43.056Publisher landing page
- PDF URL
-
https://www.scienceasia.org/2017.43.n1/scias43_56.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.scienceasia.org/2017.43.n1/scias43_56.pdfDirect OA link when available
- Concepts
-
Multivariate statistics, Regression, Bayesian multivariate linear regression, Computer science, Statistics, Regression analysis, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1, 2020: 1, 2019: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2618405501 |
|---|---|
| doi | https://doi.org/10.2306/scienceasia1513-1874.2017.43.056 |
| ids.doi | https://doi.org/10.2306/scienceasia1513-1874.2017.43.056 |
| ids.mag | 2618405501 |
| ids.openalex | https://openalex.org/W2618405501 |
| fwci | 0.58173844 |
| type | article |
| title | Robust multivariate least angle regression |
| biblio.issue | 1 |
| biblio.volume | 43 |
| biblio.last_page | 56 |
| biblio.first_page | 56 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9059000015258789 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161584116 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8312228918075562 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[0].display_name | Multivariate statistics |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5921196937561035 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C64946054 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4902082085609436 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4874476 |
| concepts[2].display_name | Bayesian multivariate linear regression |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.36781251430511475 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36736825108528137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C152877465 |
| concepts[5].level | 2 |
| concepts[5].score | 0.35955914855003357 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[5].display_name | Regression analysis |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3490040898323059 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[0].score | 0.8312228918075562 |
| keywords[0].display_name | Multivariate statistics |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5921196937561035 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/bayesian-multivariate-linear-regression |
| keywords[2].score | 0.4902082085609436 |
| keywords[2].display_name | Bayesian multivariate linear regression |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.36781251430511475 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.36736825108528137 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/regression-analysis |
| keywords[5].score | 0.35955914855003357 |
| keywords[5].display_name | Regression analysis |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3490040898323059 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.2306/scienceasia1513-1874.2017.43.056 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S191026407 |
| locations[0].source.issn | 1513-1874 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1513-1874 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ScienceAsia |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | http://www.scienceasia.org/2017.43.n1/scias43_56.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ScienceAsia |
| locations[0].landing_page_url | https://doi.org/10.2306/scienceasia1513-1874.2017.43.056 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053100991 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0974-8165 |
| authorships[0].author.display_name | Hassan S. Uraibi |
| authorships[0].countries | IQ, MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210126504 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, College of Administration and Economics, University of Al-Qadisiyah, 50082, Iraq |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130343225 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I4210126504 |
| authorships[0].institutions[0].ror | https://ror.org/02ewzwr87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210126504 |
| authorships[0].institutions[0].country_code | IQ |
| authorships[0].institutions[0].display_name | University of Al-Qadisiyah |
| authorships[0].institutions[1].id | https://openalex.org/I130343225 |
| authorships[0].institutions[1].ror | https://ror.org/02e91jd64 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I130343225 |
| authorships[0].institutions[1].country_code | MY |
| authorships[0].institutions[1].display_name | Universiti Putra Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hassan S. Uraibi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics, College of Administration and Economics, University of Al-Qadisiyah, 50082, Iraq, Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[1].author.id | https://openalex.org/A5000700306 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0552-1636 |
| authorships[1].author.display_name | Habshah Midi |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130343225 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I130343225 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I130343225 |
| authorships[1].institutions[0].ror | https://ror.org/02e91jd64 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130343225 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Putra Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Habshah Midi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang, Malaysia, Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[2].author.id | https://openalex.org/A5090637538 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4103-6726 |
| authorships[2].author.display_name | Sohel Rana |
| authorships[2].countries | BD, MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I885507782 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Applied Statistics, Faculty of Sciences and Engineering, East West University, Aftabnagar, Dhaka-1212, Bangladesh |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I130343225 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I885507782 |
| authorships[2].institutions[0].ror | https://ror.org/05p0tzt32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I885507782 |
| authorships[2].institutions[0].country_code | BD |
| authorships[2].institutions[0].display_name | East West University |
| authorships[2].institutions[1].id | https://openalex.org/I130343225 |
| authorships[2].institutions[1].ror | https://ror.org/02e91jd64 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I130343225 |
| authorships[2].institutions[1].country_code | MY |
| authorships[2].institutions[1].display_name | Universiti Putra Malaysia |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Sohel Rana |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Applied Statistics, Faculty of Sciences and Engineering, East West University, Aftabnagar, Dhaka-1212, Bangladesh, Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.scienceasia.org/2017.43.n1/scias43_56.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust multivariate least angle regression |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9059000015258789 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W2065439233, https://openalex.org/W2366651177, https://openalex.org/W3036649152, https://openalex.org/W2361261277, https://openalex.org/W2090051140, https://openalex.org/W2463955626, https://openalex.org/W2037582106, https://openalex.org/W2009820015, https://openalex.org/W2386886284, https://openalex.org/W2048136123 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2018 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2306/scienceasia1513-1874.2017.43.056 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S191026407 |
| best_oa_location.source.issn | 1513-1874 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1513-1874 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ScienceAsia |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.scienceasia.org/2017.43.n1/scias43_56.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ScienceAsia |
| best_oa_location.landing_page_url | https://doi.org/10.2306/scienceasia1513-1874.2017.43.056 |
| primary_location.id | doi:10.2306/scienceasia1513-1874.2017.43.056 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S191026407 |
| primary_location.source.issn | 1513-1874 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1513-1874 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ScienceAsia |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | http://www.scienceasia.org/2017.43.n1/scias43_56.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ScienceAsia |
| primary_location.landing_page_url | https://doi.org/10.2306/scienceasia1513-1874.2017.43.056 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2170523015, https://openalex.org/W2063978378, https://openalex.org/W2344147765, https://openalex.org/W2039943102, https://openalex.org/W2150859718, https://openalex.org/W2075381877, https://openalex.org/W2170846947, https://openalex.org/W953300354, https://openalex.org/W2017014583, https://openalex.org/W2020925091, https://openalex.org/W2177715853, https://openalex.org/W2082213488, https://openalex.org/W2052740976 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 34, 67, 119, 123 |
| abstract_inverted_index.as | 66 |
| abstract_inverted_index.by | 117 |
| abstract_inverted_index.in | 84 |
| abstract_inverted_index.is | 40, 115 |
| abstract_inverted_index.of | 26, 37, 87 |
| abstract_inverted_index.on | 62, 111 |
| abstract_inverted_index.to | 23, 41, 91 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.Van | 50 |
| abstract_inverted_index.and | 14, 28, 52, 95, 98, 122 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.for | 58, 72 |
| abstract_inverted_index.has | 81 |
| abstract_inverted_index.the | 9, 17, 24, 43, 55, 75, 85, 93, 105 |
| abstract_inverted_index.use | 8 |
| abstract_inverted_index.LARS | 108 |
| abstract_inverted_index.data | 60 |
| abstract_inverted_index.fast | 99 |
| abstract_inverted_index.high | 101 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.some | 82 |
| abstract_inverted_index.that | 7 |
| abstract_inverted_index.this | 32, 38 |
| abstract_inverted_index.very | 21 |
| abstract_inverted_index.with | 46 |
| abstract_inverted_index.Olive | 94 |
| abstract_inverted_index.Zamar | 53 |
| abstract_inverted_index.angle | 2, 78 |
| abstract_inverted_index.based | 61, 110 |
| abstract_inverted_index.least | 1, 77 |
| abstract_inverted_index.other | 29 |
| abstract_inverted_index.their | 47 |
| abstract_inverted_index.using | 118 |
| abstract_inverted_index.(LARS) | 5 |
| abstract_inverted_index.Aelst, | 51 |
| abstract_inverted_index.means, | 12 |
| abstract_inverted_index.method | 109, 114 |
| abstract_inverted_index.remedy | 31 |
| abstract_inverted_index.robust | 48, 56, 68, 76, 106 |
| abstract_inverted_index.sample | 11 |
| abstract_inverted_index.simple | 35 |
| abstract_inverted_index.study. | 125 |
| abstract_inverted_index.tested | 116 |
| abstract_inverted_index.Hawkins | 96 |
| abstract_inverted_index.between | 16 |
| abstract_inverted_index.example | 121 |
| abstract_inverted_index.plug-in | 73, 107 |
| abstract_inverted_index.propose | 90 |
| abstract_inverted_index.replace | 42 |
| abstract_inverted_index.adjusted | 63 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.employed | 54 |
| abstract_inverted_index.original | 18 |
| abstract_inverted_index.outliers | 27 |
| abstract_inverted_index.presence | 25, 86 |
| abstract_inverted_index.problem, | 33 |
| abstract_inverted_index.proposed | 113 |
| abstract_inverted_index.algorithm | 39 |
| abstract_inverted_index.bivariate | 69 |
| abstract_inverted_index.breakdown | 102 |
| abstract_inverted_index.classical | 10 |
| abstract_inverted_index.drawbacks | 83 |
| abstract_inverted_index.estimates | 45 |
| abstract_inverted_index.estimator | 103 |
| abstract_inverted_index.numerical | 120 |
| abstract_inverted_index.selection | 4, 80 |
| abstract_inverted_index.sensitive | 22 |
| abstract_inverted_index.variables | 19 |
| abstract_inverted_index.algorithms | 6 |
| abstract_inverted_index.consistent | 100 |
| abstract_inverted_index.non-robust | 44 |
| abstract_inverted_index.regression | 3, 79 |
| abstract_inverted_index.reweighted | 97 |
| abstract_inverted_index.simulation | 124 |
| abstract_inverted_index.variances, | 13 |
| abstract_inverted_index.winsorized | 59 |
| abstract_inverted_index.correlation | 57, 65, 70 |
| abstract_inverted_index.incorporate | 92 |
| abstract_inverted_index.outliers.We | 89 |
| abstract_inverted_index.correlations | 15 |
| abstract_inverted_index.modification | 36 |
| abstract_inverted_index.multivariate | 88 |
| abstract_inverted_index.LARS.However, | 74 |
| abstract_inverted_index.winsorization | 64 |
| abstract_inverted_index.contamination.To | 30 |
| abstract_inverted_index.correlations.Our | 112 |
| abstract_inverted_index.counterparts.Khan, | 49 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5053100991 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I130343225, https://openalex.org/I4210126504 |
| citation_normalized_percentile.value | 0.60779527 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |