Robust Myocardial Perfusion MRI Quantification With DeepFermi Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/tbme.2024.3485233
Stress perfusion cardiac magnetic resonance is an important technique for examining and assessing the blood supply of the myocardium. Currently, the majority of clinical perfusion scans are evaluated based on visual assessment by experienced clinicians. This makes the process subjective, and to this end, quantitative methods have been proposed to offer a more user-independent assessment of perfusion. These methods, however, rely on time-consuming deconvolution analysis and are susceptible to data outliers caused by artifacts due to cardiac or respiratory motion. In our work, we introduce a novel deep-learning method that integrates the commonly used Fermi function with a neural network architecture for fast, accurate, and robust myocardial perfusion quantification. This approach employs the Fermi model to ensure that the perfusion maps are consistent with measured data, while also utilizing a prior based on a 3D convolutional neural network to generalize spatio-temporal information across different patient data. Our network is trained within a self-supervised learning framework, which circumvents the need for ground-truth perfusion labels that are challenging to obtain. Furthermore, we extended this training methodology by adopting a technique that ensures estimations are resistant to data outliers, thereby improving robustness against motion artifacts. Our simulation experiments demonstrated an overall improvement in the accuracy and robustness of perfusion parameter estimation, consistently outperforming traditional deconvolution analysis algorithms across varying Signal-to-Noise Ratio scenarios in the presence of data outliers. For the in vivo studies, our method generated robust perfusion estimates that aligned with clinical diagnoses, while being approximately five times faster than conventional algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tbme.2024.3485233
- OA Status
- hybrid
- Cited By
- 1
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403676981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403676981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tbme.2024.3485233Digital Object Identifier
- Title
-
Robust Myocardial Perfusion MRI Quantification With DeepFermiWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-23Full publication date if available
- Authors
-
Sherine Brahma, Andreas Kofler, Felix Zimmermann, Tobias Schaeffter, Amedeo Chiribiri, Christoph KolbitschList of authors in order
- Landing page
-
https://doi.org/10.1109/tbme.2024.3485233Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/tbme.2024.3485233Direct OA link when available
- Concepts
-
Robustness (evolution), Deconvolution, Outlier, Computer science, Artificial intelligence, Pattern recognition (psychology), Convolutional neural network, Perfusion scanning, Ground truth, Perfusion, Deep learning, Artificial neural network, Machine learning, Computer vision, Algorithm, Radiology, Medicine, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403676981 |
|---|---|
| doi | https://doi.org/10.1109/tbme.2024.3485233 |
| ids.doi | https://doi.org/10.1109/tbme.2024.3485233 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39441677 |
| ids.openalex | https://openalex.org/W4403676981 |
| fwci | 0.81907382 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D055414 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Myocardial Perfusion Imaging |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D006321 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Heart |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D008279 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Magnetic Resonance Imaging |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016571 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Neural Networks, Computer |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000098642 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Perfusion Magnetic Resonance Imaging |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000077321 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Deep Learning |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D055414 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Myocardial Perfusion Imaging |
| mesh[12].qualifier_ui | Q000000981 |
| mesh[12].descriptor_ui | D006321 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | diagnostic imaging |
| mesh[12].descriptor_name | Heart |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D008279 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Magnetic Resonance Imaging |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D016571 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Neural Networks, Computer |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D007091 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Image Processing, Computer-Assisted |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000098642 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Perfusion Magnetic Resonance Imaging |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000077321 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Deep Learning |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D055414 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Myocardial Perfusion Imaging |
| mesh[21].qualifier_ui | Q000000981 |
| mesh[21].descriptor_ui | D006321 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | diagnostic imaging |
| mesh[21].descriptor_name | Heart |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D000465 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Algorithms |
| mesh[23].qualifier_ui | Q000379 |
| mesh[23].descriptor_ui | D008279 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | methods |
| mesh[23].descriptor_name | Magnetic Resonance Imaging |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D016571 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Neural Networks, Computer |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D007091 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Image Processing, Computer-Assisted |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000098642 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Perfusion Magnetic Resonance Imaging |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D006801 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Humans |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D000077321 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Deep Learning |
| mesh[29].qualifier_ui | Q000379 |
| mesh[29].descriptor_ui | D055414 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | methods |
| mesh[29].descriptor_name | Myocardial Perfusion Imaging |
| mesh[30].qualifier_ui | Q000000981 |
| mesh[30].descriptor_ui | D006321 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnostic imaging |
| mesh[30].descriptor_name | Heart |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D000465 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Algorithms |
| mesh[32].qualifier_ui | Q000379 |
| mesh[32].descriptor_ui | D008279 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | methods |
| mesh[32].descriptor_name | Magnetic Resonance Imaging |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D016571 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Neural Networks, Computer |
| mesh[34].qualifier_ui | Q000379 |
| mesh[34].descriptor_ui | D007091 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | methods |
| mesh[34].descriptor_name | Image Processing, Computer-Assisted |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D000098642 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Perfusion Magnetic Resonance Imaging |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D006801 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Humans |
| mesh[37].qualifier_ui | Q000379 |
| mesh[37].descriptor_ui | D055414 |
| mesh[37].is_major_topic | True |
| mesh[37].qualifier_name | methods |
| mesh[37].descriptor_name | Myocardial Perfusion Imaging |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D000077321 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Deep Learning |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000465 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Algorithms |
| mesh[40].qualifier_ui | Q000379 |
| mesh[40].descriptor_ui | D007090 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | methods |
| mesh[40].descriptor_name | Image Interpretation, Computer-Assisted |
| mesh[41].qualifier_ui | Q000000981 |
| mesh[41].descriptor_ui | D006321 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | diagnostic imaging |
| mesh[41].descriptor_name | Heart |
| mesh[42].qualifier_ui | Q000502 |
| mesh[42].descriptor_ui | D006321 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | physiology |
| mesh[42].descriptor_name | Heart |
| mesh[43].qualifier_ui | Q000379 |
| mesh[43].descriptor_ui | D007091 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | methods |
| mesh[43].descriptor_name | Image Processing, Computer-Assisted |
| mesh[44].qualifier_ui | Q000379 |
| mesh[44].descriptor_ui | D008279 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | methods |
| mesh[44].descriptor_name | Magnetic Resonance Imaging |
| mesh[45].qualifier_ui | |
| mesh[45].descriptor_ui | D016571 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | |
| mesh[45].descriptor_name | Neural Networks, Computer |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D006801 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Humans |
| mesh[47].qualifier_ui | Q000379 |
| mesh[47].descriptor_ui | D055414 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | methods |
| mesh[47].descriptor_name | Myocardial Perfusion Imaging |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D000077321 |
| mesh[48].is_major_topic | True |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Deep Learning |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000465 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Algorithms |
| type | article |
| title | Robust Myocardial Perfusion MRI Quantification With DeepFermi |
| awards[0].id | https://openalex.org/G7345614421 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1340 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[1].id | https://openalex.org/G1318570945 |
| awards[1].funder_id | https://openalex.org/F4320320879 |
| awards[1].display_name | |
| awards[1].funder_award_id | GRK2260 |
| awards[1].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[2].id | https://openalex.org/G5169014453 |
| awards[2].funder_id | https://openalex.org/F4320320879 |
| awards[2].display_name | |
| awards[2].funder_award_id | 372486779 |
| awards[2].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[3].id | https://openalex.org/G5003900898 |
| awards[3].funder_id | https://openalex.org/F4320320879 |
| awards[3].display_name | |
| awards[3].funder_award_id | 289347353 |
| awards[3].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[4].id | https://openalex.org/G8684862335 |
| awards[4].funder_id | https://openalex.org/F4320320879 |
| awards[4].display_name | |
| awards[4].funder_award_id | BIOQIC |
| awards[4].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[5].id | https://openalex.org/G1288812773 |
| awards[5].funder_id | https://openalex.org/F4320320879 |
| awards[5].display_name | |
| awards[5].funder_award_id | SFB |
| awards[5].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | 3 |
| biblio.volume | 72 |
| biblio.last_page | 1044 |
| biblio.first_page | 1031 |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T10372 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Cardiac Imaging and Diagnostics |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7515785694122314 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C174576160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7186852097511292 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[1].display_name | Deconvolution |
| concepts[2].id | https://openalex.org/C79337645 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6487588882446289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[2].display_name | Outlier |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6418161988258362 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6194968819618225 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5829214453697205 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5813144445419312 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C135691158 |
| concepts[7].level | 3 |
| concepts[7].score | 0.46244579553604126 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7168308 |
| concepts[7].display_name | Perfusion scanning |
| concepts[8].id | https://openalex.org/C146849305 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45272281765937805 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[8].display_name | Ground truth |
| concepts[9].id | https://openalex.org/C146957229 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44323232769966125 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1266915 |
| concepts[9].display_name | Perfusion |
| concepts[10].id | https://openalex.org/C108583219 |
| concepts[10].level | 2 |
| concepts[10].score | 0.417568564414978 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[10].display_name | Deep learning |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4156588912010193 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3992355465888977 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3667399287223816 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.18798410892486572 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C126838900 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17299821972846985 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[15].display_name | Radiology |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.13114288449287415 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C104317684 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[17].display_name | Gene |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7515785694122314 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/deconvolution |
| keywords[1].score | 0.7186852097511292 |
| keywords[1].display_name | Deconvolution |
| keywords[2].id | https://openalex.org/keywords/outlier |
| keywords[2].score | 0.6487588882446289 |
| keywords[2].display_name | Outlier |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6418161988258362 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6194968819618225 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5829214453697205 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.5813144445419312 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/perfusion-scanning |
| keywords[7].score | 0.46244579553604126 |
| keywords[7].display_name | Perfusion scanning |
| keywords[8].id | https://openalex.org/keywords/ground-truth |
| keywords[8].score | 0.45272281765937805 |
| keywords[8].display_name | Ground truth |
| keywords[9].id | https://openalex.org/keywords/perfusion |
| keywords[9].score | 0.44323232769966125 |
| keywords[9].display_name | Perfusion |
| keywords[10].id | https://openalex.org/keywords/deep-learning |
| keywords[10].score | 0.417568564414978 |
| keywords[10].display_name | Deep learning |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.4156588912010193 |
| keywords[11].display_name | Artificial neural network |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3992355465888977 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.3667399287223816 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.18798410892486572 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/radiology |
| keywords[15].score | 0.17299821972846985 |
| keywords[15].display_name | Radiology |
| keywords[16].id | https://openalex.org/keywords/medicine |
| keywords[16].score | 0.13114288449287415 |
| keywords[16].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/tbme.2024.3485233 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5240358 |
| locations[0].source.issn | 0018-9294, 1558-2531 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0018-9294 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Biomedical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Biomedical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tbme.2024.3485233 |
| locations[1].id | pmid:39441677 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on bio-medical engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39441677 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5030324598 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4340-6513 |
| authorships[0].author.display_name | Sherine Brahma |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1285933455 |
| authorships[0].affiliations[0].raw_affiliation_string | Physikalisch-Technische Bundesanstalt, Braunschweig, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I1285933455 |
| authorships[0].institutions[0].ror | https://ror.org/05r3f7h03 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1285933455, https://openalex.org/I4210136623 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Physikalisch-Technische Bundesanstalt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sherine Brahma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Physikalisch-Technische Bundesanstalt, Braunschweig, Germany |
| authorships[1].author.id | https://openalex.org/A5010913753 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9169-2572 |
| authorships[1].author.display_name | Andreas Kofler |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1285933455 |
| authorships[1].affiliations[0].raw_affiliation_string | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I1285933455 |
| authorships[1].institutions[0].ror | https://ror.org/05r3f7h03 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1285933455, https://openalex.org/I4210136623 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Physikalisch-Technische Bundesanstalt |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andreas Kofler |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[2].author.id | https://openalex.org/A5012190939 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0862-8973 |
| authorships[2].author.display_name | Felix Zimmermann |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1285933455 |
| authorships[2].affiliations[0].raw_affiliation_string | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I1285933455 |
| authorships[2].institutions[0].ror | https://ror.org/05r3f7h03 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1285933455, https://openalex.org/I4210136623 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Physikalisch-Technische Bundesanstalt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Felix F. Zimmermann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[3].author.id | https://openalex.org/A5080742330 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1310-2631 |
| authorships[3].author.display_name | Tobias Schaeffter |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1285933455 |
| authorships[3].affiliations[0].raw_affiliation_string | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I1285933455 |
| authorships[3].institutions[0].ror | https://ror.org/05r3f7h03 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1285933455, https://openalex.org/I4210136623 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Physikalisch-Technische Bundesanstalt |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tobias Schaeffter |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[4].author.id | https://openalex.org/A5038016782 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3394-4289 |
| authorships[4].author.display_name | Amedeo Chiribiri |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210119896 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Imaging Sciences and Biomedical Engineering, King's College London, U.K. |
| authorships[4].institutions[0].id | https://openalex.org/I4210119896 |
| authorships[4].institutions[0].ror | https://ror.org/02bbqcn27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210119896 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | King's College School |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Amedeo Chiribiri |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Imaging Sciences and Biomedical Engineering, King's College London, U.K. |
| authorships[5].author.id | https://openalex.org/A5046209820 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4355-8368 |
| authorships[5].author.display_name | Christoph Kolbitsch |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1285933455 |
| authorships[5].affiliations[0].raw_affiliation_string | Physikalisch-Technische Bundesanstalt, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I1285933455 |
| authorships[5].institutions[0].ror | https://ror.org/05r3f7h03 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1285933455, https://openalex.org/I4210136623 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Physikalisch-Technische Bundesanstalt |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Christoph Kolbitsch |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Physikalisch-Technische Bundesanstalt, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/tbme.2024.3485233 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Myocardial Perfusion MRI Quantification With DeepFermi |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| related_works | https://openalex.org/W2467919609, https://openalex.org/W3032083687, https://openalex.org/W2383101986, https://openalex.org/W2471267301, https://openalex.org/W2467341106, https://openalex.org/W2385340480, https://openalex.org/W2133730772, https://openalex.org/W2015301357, https://openalex.org/W2361304792, https://openalex.org/W2382734415 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/tbme.2024.3485233 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5240358 |
| best_oa_location.source.issn | 0018-9294, 1558-2531 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0018-9294 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Transactions on Biomedical Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Biomedical Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tbme.2024.3485233 |
| primary_location.id | doi:10.1109/tbme.2024.3485233 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5240358 |
| primary_location.source.issn | 0018-9294, 1558-2531 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0018-9294 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Biomedical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Biomedical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tbme.2024.3485233 |
| publication_date | 2024-10-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2042099911, https://openalex.org/W2131973318, https://openalex.org/W2141312937, https://openalex.org/W2951539836, https://openalex.org/W2213053803, https://openalex.org/W2020801855, https://openalex.org/W2900495816, https://openalex.org/W2765745076, https://openalex.org/W3005940509, https://openalex.org/W4386058366, https://openalex.org/W2605037578, https://openalex.org/W1480251210, https://openalex.org/W126429882, https://openalex.org/W3016409403, https://openalex.org/W2985649658, https://openalex.org/W3093529004, https://openalex.org/W4200436284, https://openalex.org/W2912527195, https://openalex.org/W4393986602, https://openalex.org/W4235474657, https://openalex.org/W2145913846, https://openalex.org/W2896580920, https://openalex.org/W3108748322, https://openalex.org/W2899283552, https://openalex.org/W3196420731, https://openalex.org/W1984296324, https://openalex.org/W2051434435, https://openalex.org/W3039236647, https://openalex.org/W4367055910, https://openalex.org/W6749271710, https://openalex.org/W2808243856, https://openalex.org/W3090689520, https://openalex.org/W6734122017, https://openalex.org/W4394804911, https://openalex.org/W1983281817, https://openalex.org/W2310893971, https://openalex.org/W1965908957, https://openalex.org/W2024634962, https://openalex.org/W2117687217, https://openalex.org/W2969868148, https://openalex.org/W3197525609, https://openalex.org/W4395660586, https://openalex.org/W1977607458, https://openalex.org/W4404744640, https://openalex.org/W6631190155, https://openalex.org/W1966016091, https://openalex.org/W2132401137, https://openalex.org/W1908116146, https://openalex.org/W1995558961, https://openalex.org/W2074145540, https://openalex.org/W2145526778, https://openalex.org/W1931160891, https://openalex.org/W2053144965, https://openalex.org/W3006104185, https://openalex.org/W2983323658, https://openalex.org/W2995263220, https://openalex.org/W4382181912, https://openalex.org/W2131752914, https://openalex.org/W3105636987, https://openalex.org/W4248733191 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 51, 85, 97, 129, 133, 151, 176 |
| abstract_inverted_index.3D | 134 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.an | 6, 196 |
| abstract_inverted_index.by | 32, 72, 174 |
| abstract_inverted_index.in | 199, 219, 227 |
| abstract_inverted_index.is | 5, 148 |
| abstract_inverted_index.of | 16, 22, 55, 204, 222 |
| abstract_inverted_index.on | 29, 61, 132 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.to | 41, 49, 68, 75, 115, 138, 166, 183 |
| abstract_inverted_index.we | 83, 169 |
| abstract_inverted_index.For | 225 |
| abstract_inverted_index.Our | 146, 192 |
| abstract_inverted_index.and | 11, 40, 65, 104, 202 |
| abstract_inverted_index.are | 26, 66, 121, 164, 181 |
| abstract_inverted_index.due | 74 |
| abstract_inverted_index.for | 9, 101, 159 |
| abstract_inverted_index.our | 81, 230 |
| abstract_inverted_index.the | 13, 17, 20, 37, 91, 112, 118, 157, 200, 220, 226 |
| abstract_inverted_index.This | 35, 109 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.data | 69, 184, 223 |
| abstract_inverted_index.end, | 43 |
| abstract_inverted_index.five | 244 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.maps | 120 |
| abstract_inverted_index.more | 52 |
| abstract_inverted_index.need | 158 |
| abstract_inverted_index.rely | 60 |
| abstract_inverted_index.than | 247 |
| abstract_inverted_index.that | 89, 117, 163, 178, 236 |
| abstract_inverted_index.this | 42, 171 |
| abstract_inverted_index.used | 93 |
| abstract_inverted_index.vivo | 228 |
| abstract_inverted_index.with | 96, 123, 238 |
| abstract_inverted_index.Fermi | 94, 113 |
| abstract_inverted_index.Ratio | 217 |
| abstract_inverted_index.These | 57 |
| abstract_inverted_index.based | 28, 131 |
| abstract_inverted_index.being | 242 |
| abstract_inverted_index.blood | 14 |
| abstract_inverted_index.data, | 125 |
| abstract_inverted_index.data. | 145 |
| abstract_inverted_index.fast, | 102 |
| abstract_inverted_index.makes | 36 |
| abstract_inverted_index.model | 114 |
| abstract_inverted_index.novel | 86 |
| abstract_inverted_index.offer | 50 |
| abstract_inverted_index.prior | 130 |
| abstract_inverted_index.scans | 25 |
| abstract_inverted_index.times | 245 |
| abstract_inverted_index.which | 155 |
| abstract_inverted_index.while | 126, 241 |
| abstract_inverted_index.work, | 82 |
| abstract_inverted_index.Stress | 0 |
| abstract_inverted_index.across | 142, 214 |
| abstract_inverted_index.caused | 71 |
| abstract_inverted_index.ensure | 116 |
| abstract_inverted_index.faster | 246 |
| abstract_inverted_index.labels | 162 |
| abstract_inverted_index.method | 88, 231 |
| abstract_inverted_index.motion | 190 |
| abstract_inverted_index.neural | 98, 136 |
| abstract_inverted_index.robust | 105, 233 |
| abstract_inverted_index.supply | 15 |
| abstract_inverted_index.visual | 30 |
| abstract_inverted_index.within | 150 |
| abstract_inverted_index.against | 189 |
| abstract_inverted_index.aligned | 237 |
| abstract_inverted_index.cardiac | 2, 76 |
| abstract_inverted_index.employs | 111 |
| abstract_inverted_index.ensures | 179 |
| abstract_inverted_index.methods | 45 |
| abstract_inverted_index.motion. | 79 |
| abstract_inverted_index.network | 99, 137, 147 |
| abstract_inverted_index.obtain. | 167 |
| abstract_inverted_index.overall | 197 |
| abstract_inverted_index.patient | 144 |
| abstract_inverted_index.process | 38 |
| abstract_inverted_index.thereby | 186 |
| abstract_inverted_index.trained | 149 |
| abstract_inverted_index.varying | 215 |
| abstract_inverted_index.accuracy | 201 |
| abstract_inverted_index.adopting | 175 |
| abstract_inverted_index.analysis | 64, 212 |
| abstract_inverted_index.approach | 110 |
| abstract_inverted_index.clinical | 23, 239 |
| abstract_inverted_index.commonly | 92 |
| abstract_inverted_index.extended | 170 |
| abstract_inverted_index.function | 95 |
| abstract_inverted_index.however, | 59 |
| abstract_inverted_index.learning | 153 |
| abstract_inverted_index.magnetic | 3 |
| abstract_inverted_index.majority | 21 |
| abstract_inverted_index.measured | 124 |
| abstract_inverted_index.methods, | 58 |
| abstract_inverted_index.outliers | 70 |
| abstract_inverted_index.presence | 221 |
| abstract_inverted_index.proposed | 48 |
| abstract_inverted_index.studies, | 229 |
| abstract_inverted_index.training | 172 |
| abstract_inverted_index.accurate, | 103 |
| abstract_inverted_index.artifacts | 73 |
| abstract_inverted_index.assessing | 12 |
| abstract_inverted_index.different | 143 |
| abstract_inverted_index.estimates | 235 |
| abstract_inverted_index.evaluated | 27 |
| abstract_inverted_index.examining | 10 |
| abstract_inverted_index.generated | 232 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.improving | 187 |
| abstract_inverted_index.introduce | 84 |
| abstract_inverted_index.outliers, | 185 |
| abstract_inverted_index.outliers. | 224 |
| abstract_inverted_index.parameter | 206 |
| abstract_inverted_index.perfusion | 1, 24, 107, 119, 161, 205, 234 |
| abstract_inverted_index.resistant | 182 |
| abstract_inverted_index.resonance | 4 |
| abstract_inverted_index.scenarios | 218 |
| abstract_inverted_index.technique | 8, 177 |
| abstract_inverted_index.utilizing | 128 |
| abstract_inverted_index.Currently, | 19 |
| abstract_inverted_index.algorithms | 213 |
| abstract_inverted_index.artifacts. | 191 |
| abstract_inverted_index.assessment | 31, 54 |
| abstract_inverted_index.consistent | 122 |
| abstract_inverted_index.diagnoses, | 240 |
| abstract_inverted_index.framework, | 154 |
| abstract_inverted_index.generalize | 139 |
| abstract_inverted_index.integrates | 90 |
| abstract_inverted_index.myocardial | 106 |
| abstract_inverted_index.perfusion. | 56 |
| abstract_inverted_index.robustness | 188, 203 |
| abstract_inverted_index.simulation | 193 |
| abstract_inverted_index.algorithms. | 249 |
| abstract_inverted_index.challenging | 165 |
| abstract_inverted_index.circumvents | 156 |
| abstract_inverted_index.clinicians. | 34 |
| abstract_inverted_index.estimation, | 207 |
| abstract_inverted_index.estimations | 180 |
| abstract_inverted_index.experienced | 33 |
| abstract_inverted_index.experiments | 194 |
| abstract_inverted_index.improvement | 198 |
| abstract_inverted_index.information | 141 |
| abstract_inverted_index.methodology | 173 |
| abstract_inverted_index.myocardium. | 18 |
| abstract_inverted_index.respiratory | 78 |
| abstract_inverted_index.subjective, | 39 |
| abstract_inverted_index.susceptible | 67 |
| abstract_inverted_index.traditional | 210 |
| abstract_inverted_index.Furthermore, | 168 |
| abstract_inverted_index.architecture | 100 |
| abstract_inverted_index.consistently | 208 |
| abstract_inverted_index.conventional | 248 |
| abstract_inverted_index.demonstrated | 195 |
| abstract_inverted_index.ground-truth | 160 |
| abstract_inverted_index.quantitative | 44 |
| abstract_inverted_index.approximately | 243 |
| abstract_inverted_index.convolutional | 135 |
| abstract_inverted_index.deconvolution | 63, 211 |
| abstract_inverted_index.deep-learning | 87 |
| abstract_inverted_index.outperforming | 209 |
| abstract_inverted_index.time-consuming | 62 |
| abstract_inverted_index.Signal-to-Noise | 216 |
| abstract_inverted_index.quantification. | 108 |
| abstract_inverted_index.self-supervised | 152 |
| abstract_inverted_index.spatio-temporal | 140 |
| abstract_inverted_index.user-independent | 53 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.70909517 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |