Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202506.1810.v1
This paper proposes advanced soft sensor models based on machine learning and deep learning for real-time estimation of top and bottom product compositions in a Heat-Integrated Distillation Column (HIDiC). Conventional composition analyzers, such as gas chromatographs, are expensive and suffer from significant measurement delays, making them less efficient for real-time measurement and control. As a cost-effective alternative, soft sensors can be developed using process data from a high-fidelity dynamic HIDiC simulation, with tray temperatures as the model inputs. This research develops and evaluates both linear and nonlinear modeling strategies for composition estimation in a HIDiC, including Principal Component Regression (PCR), Artificial Neural Network (ANN), and marking the first application of its kind in HIDiC modeling a Bidirectional Long Short-Term Memory (BiLSTM) network. While PCR and ANN achieved reasonable accuracy, their performance was limited by an inability to fully capture the temporal dependencies and complex nonlinearities inherent in the distillation process. In contrast, the BiLSTM model, leveraging its deep learning architecture and temporal memory capabilities, successfully learned long-range dependencies and intricate dynamic patterns in the process data. Comprehensive performance evaluation based on Mean Absolute Error (MAE), Mean Squared Error (MSE), and the coefficient of determination (R²) demonstrated that the BiLSTM model outperformed the traditional models significantly. The results confirm that the BiLSTM-based soft sensor not only enhances prediction accuracy but also represents a novel and effective approach for real-time composition estimation in HIDiC systems, offering great potential for advanced monitoring and control applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202506.1810.v1
- https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pub
- OA Status
- green
- Cited By
- 1
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411632718
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411632718Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202506.1810.v1Digital Object Identifier
- Title
-
Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation ColumnWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-24Full publication date if available
- Authors
-
Nura Musa Tahir, Jie Zhang, Matthew ArmstrongList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202506.1810.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pubDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pubDirect OA link when available
- Concepts
-
Soft sensor, Column (typography), Distillation, Nonlinear system, Product (mathematics), Fractionating column, Estimation, Process engineering, Reactive distillation, Computer science, Biological system, Mathematics, Chromatography, Chemistry, Engineering, Telecommunications, Physics, Biology, Frame (networking), Systems engineering, Operating system, Process (computing), Quantum mechanics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411632718 |
|---|---|
| doi | https://doi.org/10.20944/preprints202506.1810.v1 |
| ids.doi | https://doi.org/10.20944/preprints202506.1810.v1 |
| ids.openalex | https://openalex.org/W4411632718 |
| fwci | 3.71677326 |
| type | preprint |
| title | Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.974399983882904 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T11053 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9569000005722046 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Process Optimization and Integration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C115575686 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6805672645568848 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18822403 |
| concepts[0].display_name | Soft sensor |
| concepts[1].id | https://openalex.org/C2780551164 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5888789892196655 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2306599 |
| concepts[1].display_name | Column (typography) |
| concepts[2].id | https://openalex.org/C204030448 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5723782777786255 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[2].display_name | Distillation |
| concepts[3].id | https://openalex.org/C158622935 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5637577176094055 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[3].display_name | Nonlinear system |
| concepts[4].id | https://openalex.org/C90673727 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5514484643936157 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q901718 |
| concepts[4].display_name | Product (mathematics) |
| concepts[5].id | https://openalex.org/C154030694 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5249730944633484 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1436074 |
| concepts[5].display_name | Fractionating column |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4747467637062073 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C21880701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4486105144023895 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[7].display_name | Process engineering |
| concepts[8].id | https://openalex.org/C2780843468 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4221191108226776 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3079309 |
| concepts[8].display_name | Reactive distillation |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33959510922431946 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C186060115 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3238193392753601 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[10].display_name | Biological system |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.29309219121932983 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C43617362 |
| concepts[12].level | 1 |
| concepts[12].score | 0.26075202226638794 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[12].display_name | Chromatography |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.25198137760162354 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.20507875084877014 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.08547824621200562 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.07033023238182068 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.055961549282073975 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C126042441 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[18].display_name | Frame (networking) |
| concepts[19].id | https://openalex.org/C201995342 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[19].display_name | Systems engineering |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C98045186 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[21].display_name | Process (computing) |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/soft-sensor |
| keywords[0].score | 0.6805672645568848 |
| keywords[0].display_name | Soft sensor |
| keywords[1].id | https://openalex.org/keywords/column |
| keywords[1].score | 0.5888789892196655 |
| keywords[1].display_name | Column (typography) |
| keywords[2].id | https://openalex.org/keywords/distillation |
| keywords[2].score | 0.5723782777786255 |
| keywords[2].display_name | Distillation |
| keywords[3].id | https://openalex.org/keywords/nonlinear-system |
| keywords[3].score | 0.5637577176094055 |
| keywords[3].display_name | Nonlinear system |
| keywords[4].id | https://openalex.org/keywords/product |
| keywords[4].score | 0.5514484643936157 |
| keywords[4].display_name | Product (mathematics) |
| keywords[5].id | https://openalex.org/keywords/fractionating-column |
| keywords[5].score | 0.5249730944633484 |
| keywords[5].display_name | Fractionating column |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.4747467637062073 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/process-engineering |
| keywords[7].score | 0.4486105144023895 |
| keywords[7].display_name | Process engineering |
| keywords[8].id | https://openalex.org/keywords/reactive-distillation |
| keywords[8].score | 0.4221191108226776 |
| keywords[8].display_name | Reactive distillation |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.33959510922431946 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/biological-system |
| keywords[10].score | 0.3238193392753601 |
| keywords[10].display_name | Biological system |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.29309219121932983 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/chromatography |
| keywords[12].score | 0.26075202226638794 |
| keywords[12].display_name | Chromatography |
| keywords[13].id | https://openalex.org/keywords/chemistry |
| keywords[13].score | 0.25198137760162354 |
| keywords[13].display_name | Chemistry |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.20507875084877014 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.08547824621200562 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.07033023238182068 |
| keywords[16].display_name | Physics |
| keywords[17].id | https://openalex.org/keywords/biology |
| keywords[17].score | 0.055961549282073975 |
| keywords[17].display_name | Biology |
| language | en |
| locations[0].id | doi:10.20944/preprints202506.1810.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pub |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202506.1810.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066189540 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-6605-2819 |
| authorships[0].author.display_name | Nura Musa Tahir |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nura Musa Tahir |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100685752 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9745-664X |
| authorships[1].author.display_name | Jie Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014545084 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2120-2045 |
| authorships[2].author.display_name | Matthew Armstrong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Matthew Armstrong |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pub |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W3195996551, https://openalex.org/W2007108056, https://openalex.org/W2506777095, https://openalex.org/W1985925453, https://openalex.org/W2365633244, https://openalex.org/W2001433658, https://openalex.org/W2369356682, https://openalex.org/W2356138619, https://openalex.org/W2034881469, https://openalex.org/W2277274819 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202506.1810.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pub |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202506.1810.v1 |
| primary_location.id | doi:10.20944/preprints202506.1810.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/frontend/manuscript/d93670e0e5be63187cf34ee82b2ffddf/download_pub |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202506.1810.v1 |
| publication_date | 2025-06-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4405782952, https://openalex.org/W3180522933, https://openalex.org/W4285806159, https://openalex.org/W4380149065, https://openalex.org/W4405317090, https://openalex.org/W4391942708, https://openalex.org/W4403999797, https://openalex.org/W4404421742, https://openalex.org/W4402183969, https://openalex.org/W4404634572, https://openalex.org/W4411632718, https://openalex.org/W3101492012, https://openalex.org/W2004118174, https://openalex.org/W2098840716, https://openalex.org/W4385690904, https://openalex.org/W1978623055, https://openalex.org/W4403676064, https://openalex.org/W4409046927 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 24, 54, 66, 93, 115, 221 |
| abstract_inverted_index.As | 53 |
| abstract_inverted_index.In | 150 |
| abstract_inverted_index.an | 134 |
| abstract_inverted_index.as | 33, 74 |
| abstract_inverted_index.be | 60 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 23, 92, 112, 146, 172, 230 |
| abstract_inverted_index.of | 17, 109, 192 |
| abstract_inverted_index.on | 8, 180 |
| abstract_inverted_index.to | 136 |
| abstract_inverted_index.ANN | 125 |
| abstract_inverted_index.PCR | 123 |
| abstract_inverted_index.The | 205 |
| abstract_inverted_index.and | 11, 19, 38, 51, 81, 85, 104, 124, 142, 160, 168, 189, 223, 239 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.but | 218 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.for | 14, 48, 89, 226, 236 |
| abstract_inverted_index.gas | 34 |
| abstract_inverted_index.its | 110, 156 |
| abstract_inverted_index.not | 213 |
| abstract_inverted_index.the | 75, 106, 139, 147, 152, 173, 190, 197, 201, 209 |
| abstract_inverted_index.top | 18 |
| abstract_inverted_index.was | 131 |
| abstract_inverted_index.Long | 117 |
| abstract_inverted_index.Mean | 181, 185 |
| abstract_inverted_index.This | 0, 78 |
| abstract_inverted_index.also | 219 |
| abstract_inverted_index.both | 83 |
| abstract_inverted_index.data | 64 |
| abstract_inverted_index.deep | 12, 157 |
| abstract_inverted_index.from | 40, 65 |
| abstract_inverted_index.kind | 111 |
| abstract_inverted_index.less | 46 |
| abstract_inverted_index.only | 214 |
| abstract_inverted_index.soft | 4, 57, 211 |
| abstract_inverted_index.such | 32 |
| abstract_inverted_index.that | 196, 208 |
| abstract_inverted_index.them | 45 |
| abstract_inverted_index.tray | 72 |
| abstract_inverted_index.with | 71 |
| abstract_inverted_index.(R²) | 194 |
| abstract_inverted_index.Error | 183, 187 |
| abstract_inverted_index.HIDiC | 69, 113, 231 |
| abstract_inverted_index.While | 122 |
| abstract_inverted_index.based | 7, 179 |
| abstract_inverted_index.data. | 175 |
| abstract_inverted_index.first | 107 |
| abstract_inverted_index.fully | 137 |
| abstract_inverted_index.great | 234 |
| abstract_inverted_index.model | 76, 199 |
| abstract_inverted_index.novel | 222 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.their | 129 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.(ANN), | 103 |
| abstract_inverted_index.(MAE), | 184 |
| abstract_inverted_index.(MSE), | 188 |
| abstract_inverted_index.(PCR), | 99 |
| abstract_inverted_index.BiLSTM | 153, 198 |
| abstract_inverted_index.Column | 27 |
| abstract_inverted_index.HIDiC, | 94 |
| abstract_inverted_index.Memory | 119 |
| abstract_inverted_index.Neural | 101 |
| abstract_inverted_index.bottom | 20 |
| abstract_inverted_index.linear | 84 |
| abstract_inverted_index.making | 44 |
| abstract_inverted_index.memory | 162 |
| abstract_inverted_index.model, | 154 |
| abstract_inverted_index.models | 6, 203 |
| abstract_inverted_index.sensor | 5, 212 |
| abstract_inverted_index.suffer | 39 |
| abstract_inverted_index.Network | 102 |
| abstract_inverted_index.Squared | 186 |
| abstract_inverted_index.capture | 138 |
| abstract_inverted_index.complex | 143 |
| abstract_inverted_index.confirm | 207 |
| abstract_inverted_index.control | 240 |
| abstract_inverted_index.delays, | 43 |
| abstract_inverted_index.dynamic | 68, 170 |
| abstract_inverted_index.inputs. | 77 |
| abstract_inverted_index.learned | 165 |
| abstract_inverted_index.limited | 132 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.marking | 105 |
| abstract_inverted_index.process | 63, 174 |
| abstract_inverted_index.product | 21 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.sensors | 58 |
| abstract_inverted_index.(BiLSTM) | 120 |
| abstract_inverted_index.(HIDiC). | 28 |
| abstract_inverted_index.Absolute | 182 |
| abstract_inverted_index.accuracy | 217 |
| abstract_inverted_index.achieved | 126 |
| abstract_inverted_index.advanced | 3, 237 |
| abstract_inverted_index.approach | 225 |
| abstract_inverted_index.control. | 52 |
| abstract_inverted_index.develops | 80 |
| abstract_inverted_index.enhances | 215 |
| abstract_inverted_index.inherent | 145 |
| abstract_inverted_index.learning | 10, 13, 158 |
| abstract_inverted_index.modeling | 87, 114 |
| abstract_inverted_index.network. | 121 |
| abstract_inverted_index.offering | 233 |
| abstract_inverted_index.patterns | 171 |
| abstract_inverted_index.process. | 149 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.research | 79 |
| abstract_inverted_index.systems, | 232 |
| abstract_inverted_index.temporal | 140, 161 |
| abstract_inverted_index.Component | 97 |
| abstract_inverted_index.Principal | 96 |
| abstract_inverted_index.accuracy, | 128 |
| abstract_inverted_index.contrast, | 151 |
| abstract_inverted_index.developed | 61 |
| abstract_inverted_index.effective | 224 |
| abstract_inverted_index.efficient | 47 |
| abstract_inverted_index.evaluates | 82 |
| abstract_inverted_index.expensive | 37 |
| abstract_inverted_index.inability | 135 |
| abstract_inverted_index.including | 95 |
| abstract_inverted_index.intricate | 169 |
| abstract_inverted_index.nonlinear | 86 |
| abstract_inverted_index.potential | 235 |
| abstract_inverted_index.real-time | 15, 49, 227 |
| abstract_inverted_index.Artificial | 100 |
| abstract_inverted_index.Regression | 98 |
| abstract_inverted_index.Short-Term | 118 |
| abstract_inverted_index.analyzers, | 31 |
| abstract_inverted_index.estimation | 16, 91, 229 |
| abstract_inverted_index.evaluation | 178 |
| abstract_inverted_index.leveraging | 155 |
| abstract_inverted_index.long-range | 166 |
| abstract_inverted_index.monitoring | 238 |
| abstract_inverted_index.prediction | 216 |
| abstract_inverted_index.reasonable | 127 |
| abstract_inverted_index.represents | 220 |
| abstract_inverted_index.strategies | 88 |
| abstract_inverted_index.application | 108 |
| abstract_inverted_index.coefficient | 191 |
| abstract_inverted_index.composition | 30, 90, 228 |
| abstract_inverted_index.measurement | 42, 50 |
| abstract_inverted_index.performance | 130, 177 |
| abstract_inverted_index.significant | 41 |
| abstract_inverted_index.simulation, | 70 |
| abstract_inverted_index.traditional | 202 |
| abstract_inverted_index.BiLSTM-based | 210 |
| abstract_inverted_index.Conventional | 29 |
| abstract_inverted_index.Distillation | 26 |
| abstract_inverted_index.alternative, | 56 |
| abstract_inverted_index.architecture | 159 |
| abstract_inverted_index.compositions | 22 |
| abstract_inverted_index.demonstrated | 195 |
| abstract_inverted_index.dependencies | 141, 167 |
| abstract_inverted_index.distillation | 148 |
| abstract_inverted_index.outperformed | 200 |
| abstract_inverted_index.successfully | 164 |
| abstract_inverted_index.temperatures | 73 |
| abstract_inverted_index.Bidirectional | 116 |
| abstract_inverted_index.Comprehensive | 176 |
| abstract_inverted_index.applications. | 241 |
| abstract_inverted_index.capabilities, | 163 |
| abstract_inverted_index.determination | 193 |
| abstract_inverted_index.high-fidelity | 67 |
| abstract_inverted_index.cost-effective | 55 |
| abstract_inverted_index.nonlinearities | 144 |
| abstract_inverted_index.significantly. | 204 |
| abstract_inverted_index.Heat-Integrated | 25 |
| abstract_inverted_index.chromatographs, | 35 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.87641514 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |