Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/chemengineering9040087
This paper proposes the development of a robust nonlinear soft sensor for online estimation of product compositions in a Heat-Integrated Distillation Column (HIDiC). Traditional composition analyzers, such as gas chromatographs, are costly and suffer from long measurement delays, making them inefficient for real-time monitoring and control. To address this, data-driven soft sensors are developed using tray temperature data obtained from a high-fidelity dynamic HIDiC simulation. The study investigates both linear and nonlinear modeling strategies for composition estimation, including principal component regression (PCR), artificial neural networks (ANNs), and, for the first time in HIDiC modeling, a Bidirectional Long Short-Term Memory (BiLSTM) network. The objective is to evaluate the capability of each method for accurate estimation of product compositions in a HIDiC. The results demonstrate that the BiLSTM-based soft sensor significantly outperforms conventional methods and offers strong potential for enhancing real-time composition estimation and control in HIDiC systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/chemengineering9040087
- https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757
- OA Status
- gold
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413221752
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413221752Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/chemengineering9040087Digital Object Identifier
- Title
-
Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation ColumnWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-11Full publication date if available
- Authors
-
Nura Musa Tahir, Jie Zhang, Matthew ArmstrongList of authors in order
- Landing page
-
https://doi.org/10.3390/chemengineering9040087Publisher landing page
- PDF URL
-
https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757Direct OA link when available
- Concepts
-
Soft sensor, Fractionating column, Computer science, Artificial neural network, Distillation, Principal component analysis, Nonlinear system, Tray, Component (thermodynamics), Control engineering, Process engineering, Artificial intelligence, Engineering, Process (computing), Chemistry, Physics, Operating system, Mechanical engineering, Organic chemistry, Thermodynamics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413221752 |
|---|---|
| doi | https://doi.org/10.3390/chemengineering9040087 |
| ids.doi | https://doi.org/10.3390/chemengineering9040087 |
| ids.openalex | https://openalex.org/W4413221752 |
| fwci | 0.0 |
| type | article |
| title | Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column |
| biblio.issue | 4 |
| biblio.volume | 9 |
| biblio.last_page | 87 |
| biblio.first_page | 87 |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T10876 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Fault Detection and Control Systems |
| topics[2].id | https://openalex.org/T11472 |
| topics[2].field.id | https://openalex.org/fields/15 |
| topics[2].field.display_name | Chemical Engineering |
| topics[2].score | 0.9865999817848206 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1502 |
| topics[2].subfield.display_name | Bioengineering |
| topics[2].display_name | Analytical Chemistry and Sensors |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1624 |
| apc_paid.value | 1500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1624 |
| concepts[0].id | https://openalex.org/C115575686 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9212178587913513 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18822403 |
| concepts[0].display_name | Soft sensor |
| concepts[1].id | https://openalex.org/C154030694 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8063558340072632 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1436074 |
| concepts[1].display_name | Fractionating column |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6009631752967834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5865984559059143 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C204030448 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5788708925247192 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[4].display_name | Distillation |
| concepts[5].id | https://openalex.org/C27438332 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5635011196136475 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[5].display_name | Principal component analysis |
| concepts[6].id | https://openalex.org/C158622935 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5258439183235168 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[6].display_name | Nonlinear system |
| concepts[7].id | https://openalex.org/C2780950554 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49501508474349976 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q613972 |
| concepts[7].display_name | Tray |
| concepts[8].id | https://openalex.org/C168167062 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4345381557941437 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1117970 |
| concepts[8].display_name | Component (thermodynamics) |
| concepts[9].id | https://openalex.org/C133731056 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4120499789714813 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[9].display_name | Control engineering |
| concepts[10].id | https://openalex.org/C21880701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40925100445747375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[10].display_name | Process engineering |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.26353904604911804 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2366001307964325 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C98045186 |
| concepts[13].level | 2 |
| concepts[13].score | 0.1951214075088501 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[13].display_name | Process (computing) |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07419246435165405 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C78519656 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[17].display_name | Mechanical engineering |
| concepts[18].id | https://openalex.org/C178790620 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[18].display_name | Organic chemistry |
| concepts[19].id | https://openalex.org/C97355855 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[19].display_name | Thermodynamics |
| concepts[20].id | https://openalex.org/C62520636 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[20].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/soft-sensor |
| keywords[0].score | 0.9212178587913513 |
| keywords[0].display_name | Soft sensor |
| keywords[1].id | https://openalex.org/keywords/fractionating-column |
| keywords[1].score | 0.8063558340072632 |
| keywords[1].display_name | Fractionating column |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6009631752967834 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5865984559059143 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/distillation |
| keywords[4].score | 0.5788708925247192 |
| keywords[4].display_name | Distillation |
| keywords[5].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[5].score | 0.5635011196136475 |
| keywords[5].display_name | Principal component analysis |
| keywords[6].id | https://openalex.org/keywords/nonlinear-system |
| keywords[6].score | 0.5258439183235168 |
| keywords[6].display_name | Nonlinear system |
| keywords[7].id | https://openalex.org/keywords/tray |
| keywords[7].score | 0.49501508474349976 |
| keywords[7].display_name | Tray |
| keywords[8].id | https://openalex.org/keywords/component |
| keywords[8].score | 0.4345381557941437 |
| keywords[8].display_name | Component (thermodynamics) |
| keywords[9].id | https://openalex.org/keywords/control-engineering |
| keywords[9].score | 0.4120499789714813 |
| keywords[9].display_name | Control engineering |
| keywords[10].id | https://openalex.org/keywords/process-engineering |
| keywords[10].score | 0.40925100445747375 |
| keywords[10].display_name | Process engineering |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.26353904604911804 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.2366001307964325 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/process |
| keywords[13].score | 0.1951214075088501 |
| keywords[13].display_name | Process (computing) |
| keywords[14].id | https://openalex.org/keywords/chemistry |
| keywords[14].score | 0.07419246435165405 |
| keywords[14].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.3390/chemengineering9040087 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210200328 |
| locations[0].source.issn | 2305-7084 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2305-7084 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ChemEngineering |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ChemEngineering |
| locations[0].landing_page_url | https://doi.org/10.3390/chemengineering9040087 |
| locations[1].id | pmh:oai:doaj.org/article:e301261e7a0b4542a1c75dfc13d2447a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ChemEngineering, Vol 9, Iss 4, p 87 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e301261e7a0b4542a1c75dfc13d2447a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5066189540 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-6605-2819 |
| authorships[0].author.display_name | Nura Musa Tahir |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| authorships[0].institutions[0].id | https://openalex.org/I84884186 |
| authorships[0].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Newcastle University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nura Musa Tahir |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| authorships[1].author.id | https://openalex.org/A5100685752 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9745-664X |
| authorships[1].author.display_name | Jie Zhang |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| authorships[1].institutions[0].id | https://openalex.org/I84884186 |
| authorships[1].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Newcastle University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Zhang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| authorships[2].author.id | https://openalex.org/A5014545084 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2120-2045 |
| authorships[2].author.display_name | Matthew Armstrong |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84884186 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| authorships[2].institutions[0].id | https://openalex.org/I84884186 |
| authorships[2].institutions[0].ror | https://ror.org/01kj2bm70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84884186 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Newcastle University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Matthew Armstrong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Nonlinear Soft Sensor for Online Estimation of Product Compositions in Heat-Integrated Distillation Column |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W2182320713, https://openalex.org/W2648724628, https://openalex.org/W2153713740, https://openalex.org/W2280442354, https://openalex.org/W4413221752, https://openalex.org/W2001433658, https://openalex.org/W2369356682, https://openalex.org/W2356138619, https://openalex.org/W2034881469, https://openalex.org/W2277274819 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/chemengineering9040087 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210200328 |
| best_oa_location.source.issn | 2305-7084 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2305-7084 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ChemEngineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ChemEngineering |
| best_oa_location.landing_page_url | https://doi.org/10.3390/chemengineering9040087 |
| primary_location.id | doi:10.3390/chemengineering9040087 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210200328 |
| primary_location.source.issn | 2305-7084 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2305-7084 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ChemEngineering |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2305-7084/9/4/87/pdf?version=1754891757 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ChemEngineering |
| primary_location.landing_page_url | https://doi.org/10.3390/chemengineering9040087 |
| publication_date | 2025-08-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4405782952, https://openalex.org/W2523024201, https://openalex.org/W4382405349, https://openalex.org/W2986566787, https://openalex.org/W3114252361, https://openalex.org/W3198931507, https://openalex.org/W3102335995, https://openalex.org/W2520634214, https://openalex.org/W4385739956, https://openalex.org/W2054177534, https://openalex.org/W4392978539, https://openalex.org/W4316372411, https://openalex.org/W4406336624, https://openalex.org/W4403676064, https://openalex.org/W6878474122, https://openalex.org/W1978623055, https://openalex.org/W4409046927 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 6, 18, 60, 94, 118 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.as | 27 |
| abstract_inverted_index.in | 17, 91, 117, 143 |
| abstract_inverted_index.is | 103 |
| abstract_inverted_index.of | 5, 14, 108, 114 |
| abstract_inverted_index.to | 104 |
| abstract_inverted_index.The | 65, 101, 120 |
| abstract_inverted_index.and | 32, 44, 70, 132, 141 |
| abstract_inverted_index.are | 30, 52 |
| abstract_inverted_index.for | 11, 41, 74, 87, 111, 136 |
| abstract_inverted_index.gas | 28 |
| abstract_inverted_index.the | 3, 88, 106, 124 |
| abstract_inverted_index.Long | 96 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.and, | 86 |
| abstract_inverted_index.both | 68 |
| abstract_inverted_index.data | 57 |
| abstract_inverted_index.each | 109 |
| abstract_inverted_index.from | 34, 59 |
| abstract_inverted_index.long | 35 |
| abstract_inverted_index.soft | 9, 50, 126 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.them | 39 |
| abstract_inverted_index.time | 90 |
| abstract_inverted_index.tray | 55 |
| abstract_inverted_index.HIDiC | 63, 92, 144 |
| abstract_inverted_index.first | 89 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.study | 66 |
| abstract_inverted_index.this, | 48 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.(PCR), | 81 |
| abstract_inverted_index.Column | 21 |
| abstract_inverted_index.HIDiC. | 119 |
| abstract_inverted_index.Memory | 98 |
| abstract_inverted_index.costly | 31 |
| abstract_inverted_index.linear | 69 |
| abstract_inverted_index.making | 38 |
| abstract_inverted_index.method | 110 |
| abstract_inverted_index.neural | 83 |
| abstract_inverted_index.offers | 133 |
| abstract_inverted_index.online | 12 |
| abstract_inverted_index.robust | 7 |
| abstract_inverted_index.sensor | 10, 127 |
| abstract_inverted_index.strong | 134 |
| abstract_inverted_index.suffer | 33 |
| abstract_inverted_index.(ANNs), | 85 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.control | 142 |
| abstract_inverted_index.delays, | 37 |
| abstract_inverted_index.dynamic | 62 |
| abstract_inverted_index.methods | 131 |
| abstract_inverted_index.product | 15, 115 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.sensors | 51 |
| abstract_inverted_index.(BiLSTM) | 99 |
| abstract_inverted_index.(HIDiC). | 22 |
| abstract_inverted_index.accurate | 112 |
| abstract_inverted_index.control. | 45 |
| abstract_inverted_index.evaluate | 105 |
| abstract_inverted_index.modeling | 72 |
| abstract_inverted_index.network. | 100 |
| abstract_inverted_index.networks | 84 |
| abstract_inverted_index.obtained | 58 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.systems. | 145 |
| abstract_inverted_index.component | 79 |
| abstract_inverted_index.developed | 53 |
| abstract_inverted_index.enhancing | 137 |
| abstract_inverted_index.including | 77 |
| abstract_inverted_index.modeling, | 93 |
| abstract_inverted_index.nonlinear | 8, 71 |
| abstract_inverted_index.objective | 102 |
| abstract_inverted_index.potential | 135 |
| abstract_inverted_index.principal | 78 |
| abstract_inverted_index.real-time | 42, 138 |
| abstract_inverted_index.Short-Term | 97 |
| abstract_inverted_index.analyzers, | 25 |
| abstract_inverted_index.artificial | 82 |
| abstract_inverted_index.capability | 107 |
| abstract_inverted_index.estimation | 13, 113, 140 |
| abstract_inverted_index.monitoring | 43 |
| abstract_inverted_index.regression | 80 |
| abstract_inverted_index.strategies | 73 |
| abstract_inverted_index.Traditional | 23 |
| abstract_inverted_index.composition | 24, 75, 139 |
| abstract_inverted_index.data-driven | 49 |
| abstract_inverted_index.demonstrate | 122 |
| abstract_inverted_index.development | 4 |
| abstract_inverted_index.estimation, | 76 |
| abstract_inverted_index.inefficient | 40 |
| abstract_inverted_index.measurement | 36 |
| abstract_inverted_index.outperforms | 129 |
| abstract_inverted_index.simulation. | 64 |
| abstract_inverted_index.temperature | 56 |
| abstract_inverted_index.BiLSTM-based | 125 |
| abstract_inverted_index.Distillation | 20 |
| abstract_inverted_index.compositions | 16, 116 |
| abstract_inverted_index.conventional | 130 |
| abstract_inverted_index.investigates | 67 |
| abstract_inverted_index.Bidirectional | 95 |
| abstract_inverted_index.high-fidelity | 61 |
| abstract_inverted_index.significantly | 128 |
| abstract_inverted_index.Heat-Integrated | 19 |
| abstract_inverted_index.chromatographs, | 29 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5066189540, https://openalex.org/A5100685752 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I84884186 |
| citation_normalized_percentile.value | 0.43641057 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |