Robust parameter design of mixed multiple responses based on a latent variable Gaussian process model Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1080/0305215x.2022.2124982
Traditional robust parameter design methods mainly focus on the optimization of quantitative quality characteristics. However, computer experiments involving qualitative and quantitative mixed input and output occur frequently in the manufacturing industry, which prompted the authors to develop an effective meta-modeling and optimization technique for such experiments. This article combines the latent variable Gaussian process (LVGP) model and fuzzy set theory to create a mixed multi-response LVGP (MMR-LVGP) model involving qualitative and quantitative mixed input and output. Then, the optimization scheme is established by comprehensively weighing the location and dispersion effects of each quality characteristic to find the joint optimal solution of qualitative and quantitative factors. Numerical and industrial cases are used to illustrate the validity of the proposed method in the modeling and optimization of experimental data with qualitative and quantitative mixed input and output or spatio-temporal structure. The comparison results indicate that the proposed method is preferred over existing methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/0305215x.2022.2124982
- OA Status
- green
- Cited By
- 5
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307564057
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307564057Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/0305215x.2022.2124982Digital Object Identifier
- Title
-
Robust parameter design of mixed multiple responses based on a latent variable Gaussian process modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-25Full publication date if available
- Authors
-
Cuihong Zhai, Jianjun Wang, Zebiao Feng, Yan Ma, Hai-Song DengList of authors in order
- Landing page
-
https://doi.org/10.1080/0305215x.2022.2124982Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://figshare.com/articles/journal_contribution/Robust_parameter_design_of_mixed_multiple_responses_based_on_a_latent_variable_Gaussian_process_model/21399566Direct OA link when available
- Concepts
-
Mathematical optimization, Computer science, Process (computing), Latent variable, Experimental data, Fuzzy logic, Gaussian, Design of experiments, Data mining, Algorithm, Mathematics, Machine learning, Artificial intelligence, Statistics, Quantum mechanics, Operating system, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307564057 |
|---|---|
| doi | https://doi.org/10.1080/0305215x.2022.2124982 |
| ids.doi | https://doi.org/10.1080/0305215x.2022.2124982 |
| ids.openalex | https://openalex.org/W4307564057 |
| fwci | 1.00244978 |
| type | article |
| title | Robust parameter design of mixed multiple responses based on a latent variable Gaussian process model |
| awards[0].id | https://openalex.org/G4350823555 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 71931006 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G1166366167 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 72171118 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G8016007651 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 11901299 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G269772510 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 71771121 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 55 |
| biblio.last_page | 1777 |
| biblio.first_page | 1760 |
| topics[0].id | https://openalex.org/T11798 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Optimal Experimental Design Methods |
| topics[1].id | https://openalex.org/T10848 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[2].id | https://openalex.org/T12945 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.9706000089645386 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1405 |
| topics[2].subfield.display_name | Management of Technology and Innovation |
| topics[2].display_name | Quality Function Deployment in Product Design |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5622366070747375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5020356178283691 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C98045186 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4998159408569336 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[2].display_name | Process (computing) |
| concepts[3].id | https://openalex.org/C51167844 |
| concepts[3].level | 2 |
| concepts[3].score | 0.47769787907600403 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[3].display_name | Latent variable |
| concepts[4].id | https://openalex.org/C55037315 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46216604113578796 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5421151 |
| concepts[4].display_name | Experimental data |
| concepts[5].id | https://openalex.org/C58166 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4601728022098541 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[5].display_name | Fuzzy logic |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4273372292518616 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C34559072 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4194400906562805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2334061 |
| concepts[7].display_name | Design of experiments |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41020405292510986 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.349658727645874 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.27051618695259094 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2015610933303833 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.1795797348022461 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16527551412582397 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.5622366070747375 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5020356178283691 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/process |
| keywords[2].score | 0.4998159408569336 |
| keywords[2].display_name | Process (computing) |
| keywords[3].id | https://openalex.org/keywords/latent-variable |
| keywords[3].score | 0.47769787907600403 |
| keywords[3].display_name | Latent variable |
| keywords[4].id | https://openalex.org/keywords/experimental-data |
| keywords[4].score | 0.46216604113578796 |
| keywords[4].display_name | Experimental data |
| keywords[5].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[5].score | 0.4601728022098541 |
| keywords[5].display_name | Fuzzy logic |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.4273372292518616 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/design-of-experiments |
| keywords[7].score | 0.4194400906562805 |
| keywords[7].display_name | Design of experiments |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.41020405292510986 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.349658727645874 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.27051618695259094 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.2015610933303833 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.1795797348022461 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.16527551412582397 |
| keywords[13].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1080/0305215x.2022.2124982 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S139857051 |
| locations[0].source.issn | 0305-215X, 1026-745X, 1029-0273 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0305-215X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Engineering Optimization |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering Optimization |
| locations[0].landing_page_url | https://doi.org/10.1080/0305215x.2022.2124982 |
| locations[1].id | pmh:oai:figshare.com:article/21399566 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400572 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[1].source.host_organization | https://openalex.org/I196829312 |
| locations[1].source.host_organization_name | La Trobe University |
| locations[1].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://figshare.com/articles/journal_contribution/Robust_parameter_design_of_mixed_multiple_responses_based_on_a_latent_variable_Gaussian_process_model/21399566 |
| locations[2].id | doi:10.6084/m9.figshare.21399566.v1 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.6084/m9.figshare.21399566.v1 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5080968747 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Cuihong Zhai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[0].institutions[0].id | https://openalex.org/I36399199 |
| authorships[0].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cuihong Zhai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[1].author.id | https://openalex.org/A5024599096 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0323-0365 |
| authorships[1].author.display_name | Jianjun Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[1].institutions[0].id | https://openalex.org/I36399199 |
| authorships[1].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jianjun Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[2].author.id | https://openalex.org/A5024266983 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8912-2482 |
| authorships[2].author.display_name | Zebiao Feng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Management, Nanjing University of Posts and Telecommunications, Nanjing, P.R. China; |
| authorships[2].institutions[0].id | https://openalex.org/I41198531 |
| authorships[2].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zebiao Feng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Management, Nanjing University of Posts and Telecommunications, Nanjing, P.R. China; |
| authorships[3].author.id | https://openalex.org/A5102862727 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-2525-0055 |
| authorships[3].author.display_name | Yan Ma |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36399199 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[3].institutions[0].id | https://openalex.org/I36399199 |
| authorships[3].institutions[0].ror | https://ror.org/00xp9wg62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I36399199 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yan Ma |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Management Science and Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China |
| authorships[4].author.id | https://openalex.org/A5004514838 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Hai-Song Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I206777745 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Statistics and Data Science, Nanjing Audit University, Nanjing, P.R. China |
| authorships[4].institutions[0].id | https://openalex.org/I206777745 |
| authorships[4].institutions[0].ror | https://ror.org/04zj2bd87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I206777745 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing Audit University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Haisong Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Statistics and Data Science, Nanjing Audit University, Nanjing, P.R. China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://figshare.com/articles/journal_contribution/Robust_parameter_design_of_mixed_multiple_responses_based_on_a_latent_variable_Gaussian_process_model/21399566 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust parameter design of mixed multiple responses based on a latent variable Gaussian process model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11798 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Optimal Experimental Design Methods |
| related_works | https://openalex.org/W3033927325, https://openalex.org/W2116312697, https://openalex.org/W2362353273, https://openalex.org/W4316276477, https://openalex.org/W4390146674, https://openalex.org/W4383108770, https://openalex.org/W4320010348, https://openalex.org/W2948616127, https://openalex.org/W3009997745, https://openalex.org/W3184080862 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:figshare.com:article/21399566 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://figshare.com/articles/journal_contribution/Robust_parameter_design_of_mixed_multiple_responses_based_on_a_latent_variable_Gaussian_process_model/21399566 |
| primary_location.id | doi:10.1080/0305215x.2022.2124982 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S139857051 |
| primary_location.source.issn | 0305-215X, 1026-745X, 1029-0273 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0305-215X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Engineering Optimization |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering Optimization |
| primary_location.landing_page_url | https://doi.org/10.1080/0305215x.2022.2124982 |
| publication_date | 2022-10-25 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2151817466, https://openalex.org/W2083884593, https://openalex.org/W1493037407, https://openalex.org/W2524575205, https://openalex.org/W2094020500, https://openalex.org/W3053213523, https://openalex.org/W2524866123, https://openalex.org/W2973067616, https://openalex.org/W2042504105, https://openalex.org/W2169311105, https://openalex.org/W2034838130, https://openalex.org/W2263321738, https://openalex.org/W2037868606, https://openalex.org/W2953354961, https://openalex.org/W3005172804, https://openalex.org/W2125211942, https://openalex.org/W2469316679, https://openalex.org/W3028667637, https://openalex.org/W1997288812, https://openalex.org/W2902366625, https://openalex.org/W2937231020, https://openalex.org/W2000736122, https://openalex.org/W7011559036, https://openalex.org/W90122157, https://openalex.org/W3153869926, https://openalex.org/W2575498458, https://openalex.org/W2156614992, https://openalex.org/W2076474160, https://openalex.org/W2018044188, https://openalex.org/W1965122441, https://openalex.org/W1526220164, https://openalex.org/W2969962179, https://openalex.org/W3199693382, https://openalex.org/W4211007335, https://openalex.org/W2041280856, https://openalex.org/W2963384660, https://openalex.org/W2094009285, https://openalex.org/W4211049957, https://openalex.org/W2044771513, https://openalex.org/W2379619818, https://openalex.org/W4301689241 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 62 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.by | 82 |
| abstract_inverted_index.in | 27, 119 |
| abstract_inverted_index.is | 80, 146 |
| abstract_inverted_index.of | 10, 90, 100, 115, 124 |
| abstract_inverted_index.on | 7 |
| abstract_inverted_index.or | 135 |
| abstract_inverted_index.to | 35, 60, 94, 111 |
| abstract_inverted_index.The | 138 |
| abstract_inverted_index.and | 19, 23, 40, 56, 70, 74, 87, 102, 106, 122, 129, 133 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.for | 43 |
| abstract_inverted_index.set | 58 |
| abstract_inverted_index.the | 8, 28, 33, 49, 77, 85, 96, 113, 116, 120, 143 |
| abstract_inverted_index.LVGP | 65 |
| abstract_inverted_index.This | 46 |
| abstract_inverted_index.data | 126 |
| abstract_inverted_index.each | 91 |
| abstract_inverted_index.find | 95 |
| abstract_inverted_index.over | 148 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.used | 110 |
| abstract_inverted_index.with | 127 |
| abstract_inverted_index.Then, | 76 |
| abstract_inverted_index.cases | 108 |
| abstract_inverted_index.focus | 6 |
| abstract_inverted_index.fuzzy | 57 |
| abstract_inverted_index.input | 22, 73, 132 |
| abstract_inverted_index.joint | 97 |
| abstract_inverted_index.mixed | 21, 63, 72, 131 |
| abstract_inverted_index.model | 55, 67 |
| abstract_inverted_index.occur | 25 |
| abstract_inverted_index.which | 31 |
| abstract_inverted_index.(LVGP) | 54 |
| abstract_inverted_index.create | 61 |
| abstract_inverted_index.design | 3 |
| abstract_inverted_index.latent | 50 |
| abstract_inverted_index.mainly | 5 |
| abstract_inverted_index.method | 118, 145 |
| abstract_inverted_index.output | 24, 134 |
| abstract_inverted_index.robust | 1 |
| abstract_inverted_index.scheme | 79 |
| abstract_inverted_index.theory | 59 |
| abstract_inverted_index.article | 47 |
| abstract_inverted_index.authors | 34 |
| abstract_inverted_index.develop | 36 |
| abstract_inverted_index.effects | 89 |
| abstract_inverted_index.methods | 4 |
| abstract_inverted_index.optimal | 98 |
| abstract_inverted_index.output. | 75 |
| abstract_inverted_index.process | 53 |
| abstract_inverted_index.quality | 12, 92 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.Gaussian | 52 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.combines | 48 |
| abstract_inverted_index.computer | 15 |
| abstract_inverted_index.existing | 149 |
| abstract_inverted_index.factors. | 104 |
| abstract_inverted_index.indicate | 141 |
| abstract_inverted_index.location | 86 |
| abstract_inverted_index.methods. | 150 |
| abstract_inverted_index.modeling | 121 |
| abstract_inverted_index.prompted | 32 |
| abstract_inverted_index.proposed | 117, 144 |
| abstract_inverted_index.solution | 99 |
| abstract_inverted_index.validity | 114 |
| abstract_inverted_index.variable | 51 |
| abstract_inverted_index.weighing | 84 |
| abstract_inverted_index.Numerical | 105 |
| abstract_inverted_index.effective | 38 |
| abstract_inverted_index.industry, | 30 |
| abstract_inverted_index.involving | 17, 68 |
| abstract_inverted_index.parameter | 2 |
| abstract_inverted_index.preferred | 147 |
| abstract_inverted_index.technique | 42 |
| abstract_inverted_index.(MMR-LVGP) | 66 |
| abstract_inverted_index.comparison | 139 |
| abstract_inverted_index.dispersion | 88 |
| abstract_inverted_index.frequently | 26 |
| abstract_inverted_index.illustrate | 112 |
| abstract_inverted_index.industrial | 107 |
| abstract_inverted_index.structure. | 137 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.established | 81 |
| abstract_inverted_index.experiments | 16 |
| abstract_inverted_index.qualitative | 18, 69, 101, 128 |
| abstract_inverted_index.experimental | 125 |
| abstract_inverted_index.experiments. | 45 |
| abstract_inverted_index.optimization | 9, 41, 78, 123 |
| abstract_inverted_index.quantitative | 11, 20, 71, 103, 130 |
| abstract_inverted_index.manufacturing | 29 |
| abstract_inverted_index.meta-modeling | 39 |
| abstract_inverted_index.characteristic | 93 |
| abstract_inverted_index.multi-response | 64 |
| abstract_inverted_index.comprehensively | 83 |
| abstract_inverted_index.spatio-temporal | 136 |
| abstract_inverted_index.characteristics. | 13 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5024599096 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I36399199 |
| citation_normalized_percentile.value | 0.7670837 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |