Robust Partial-Label Learning by Leveraging Class Activation Values Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.11743
Real-world training data is often noisy; for example, human annotators assign conflicting class labels to the same instances. Partial-label learning (PLL) is a weakly supervised learning paradigm that allows training classifiers in this context without manual data cleaning. While state-of-the-art methods have good predictive performance, their predictions are sensitive to high noise levels, out-of-distribution data, and adversarial perturbations. We propose a novel PLL method based on subjective logic, which explicitly represents uncertainty by leveraging the magnitudes of the underlying neural network's class activation values. Thereby, we effectively incorporate prior knowledge about the class labels by using a novel label weight re-distribution strategy that we prove to be optimal. We empirically show that our method yields more robust predictions in terms of predictive performance under high PLL noise levels, handling out-of-distribution examples, and handling adversarial perturbations on the test instances.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.11743
- https://arxiv.org/pdf/2502.11743
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407719609
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407719609Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.11743Digital Object Identifier
- Title
-
Robust Partial-Label Learning by Leveraging Class Activation ValuesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-17Full publication date if available
- Authors
-
Tobias A. Fuchs, Florian KalinkeList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.11743Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.11743Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.11743Direct OA link when available
- Concepts
-
Class (philosophy), Computer science, Artificial intelligence, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407719609 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.11743 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.11743 |
| ids.openalex | https://openalex.org/W4407719609 |
| fwci | |
| type | preprint |
| title | Robust Partial-Label Learning by Leveraging Class Activation Values |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9221000075340271 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777212361 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6513568162918091 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[0].display_name | Class (philosophy) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4505338668823242 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3727870583534241 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C144133560 |
| concepts[3].level | 0 |
| concepts[3].score | 0.33127036690711975 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[3].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/class |
| keywords[0].score | 0.6513568162918091 |
| keywords[0].display_name | Class (philosophy) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4505338668823242 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3727870583534241 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/business |
| keywords[3].score | 0.33127036690711975 |
| keywords[3].display_name | Business |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.11743 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.11743 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.11743 |
| locations[1].id | doi:10.48550/arxiv.2502.11743 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.11743 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5013911322 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8812-9359 |
| authorships[0].author.display_name | Tobias A. Fuchs |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fuchs, Tobias |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054748088 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0443-6288 |
| authorships[1].author.display_name | Florian Kalinke |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Kalinke, Florian |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.11743 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust Partial-Label Learning by Leveraging Class Activation Values |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9221000075340271 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.11743 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.11743 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.11743 |
| primary_location.id | pmh:oai:arXiv.org:2502.11743 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.11743 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.11743 |
| publication_date | 2025-02-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 60, 96 |
| abstract_inverted_index.We | 58, 108 |
| abstract_inverted_index.be | 106 |
| abstract_inverted_index.by | 72, 94 |
| abstract_inverted_index.in | 31, 118 |
| abstract_inverted_index.is | 3, 21 |
| abstract_inverted_index.of | 76, 120 |
| abstract_inverted_index.on | 65, 135 |
| abstract_inverted_index.to | 14, 49, 105 |
| abstract_inverted_index.we | 85, 103 |
| abstract_inverted_index.PLL | 62, 125 |
| abstract_inverted_index.and | 55, 131 |
| abstract_inverted_index.are | 47 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.our | 112 |
| abstract_inverted_index.the | 15, 74, 77, 91, 136 |
| abstract_inverted_index.data | 2, 36 |
| abstract_inverted_index.good | 42 |
| abstract_inverted_index.have | 41 |
| abstract_inverted_index.high | 50, 124 |
| abstract_inverted_index.more | 115 |
| abstract_inverted_index.same | 16 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.test | 137 |
| abstract_inverted_index.that | 27, 102, 111 |
| abstract_inverted_index.this | 32 |
| abstract_inverted_index.(PLL) | 20 |
| abstract_inverted_index.While | 38 |
| abstract_inverted_index.about | 90 |
| abstract_inverted_index.based | 64 |
| abstract_inverted_index.class | 12, 81, 92 |
| abstract_inverted_index.data, | 54 |
| abstract_inverted_index.human | 8 |
| abstract_inverted_index.label | 98 |
| abstract_inverted_index.noise | 51, 126 |
| abstract_inverted_index.novel | 61, 97 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.prior | 88 |
| abstract_inverted_index.prove | 104 |
| abstract_inverted_index.terms | 119 |
| abstract_inverted_index.their | 45 |
| abstract_inverted_index.under | 123 |
| abstract_inverted_index.using | 95 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.allows | 28 |
| abstract_inverted_index.assign | 10 |
| abstract_inverted_index.labels | 13, 93 |
| abstract_inverted_index.logic, | 67 |
| abstract_inverted_index.manual | 35 |
| abstract_inverted_index.method | 63, 113 |
| abstract_inverted_index.neural | 79 |
| abstract_inverted_index.noisy; | 5 |
| abstract_inverted_index.robust | 116 |
| abstract_inverted_index.weakly | 23 |
| abstract_inverted_index.weight | 99 |
| abstract_inverted_index.yields | 114 |
| abstract_inverted_index.context | 33 |
| abstract_inverted_index.levels, | 52, 127 |
| abstract_inverted_index.methods | 40 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.values. | 83 |
| abstract_inverted_index.without | 34 |
| abstract_inverted_index.Thereby, | 84 |
| abstract_inverted_index.example, | 7 |
| abstract_inverted_index.handling | 128, 132 |
| abstract_inverted_index.learning | 19, 25 |
| abstract_inverted_index.optimal. | 107 |
| abstract_inverted_index.paradigm | 26 |
| abstract_inverted_index.strategy | 101 |
| abstract_inverted_index.training | 1, 29 |
| abstract_inverted_index.cleaning. | 37 |
| abstract_inverted_index.examples, | 130 |
| abstract_inverted_index.knowledge | 89 |
| abstract_inverted_index.network's | 80 |
| abstract_inverted_index.sensitive | 48 |
| abstract_inverted_index.Real-world | 0 |
| abstract_inverted_index.activation | 82 |
| abstract_inverted_index.annotators | 9 |
| abstract_inverted_index.explicitly | 69 |
| abstract_inverted_index.instances. | 17, 138 |
| abstract_inverted_index.leveraging | 73 |
| abstract_inverted_index.magnitudes | 75 |
| abstract_inverted_index.predictive | 43, 121 |
| abstract_inverted_index.represents | 70 |
| abstract_inverted_index.subjective | 66 |
| abstract_inverted_index.supervised | 24 |
| abstract_inverted_index.underlying | 78 |
| abstract_inverted_index.adversarial | 56, 133 |
| abstract_inverted_index.classifiers | 30 |
| abstract_inverted_index.conflicting | 11 |
| abstract_inverted_index.effectively | 86 |
| abstract_inverted_index.empirically | 109 |
| abstract_inverted_index.incorporate | 87 |
| abstract_inverted_index.performance | 122 |
| abstract_inverted_index.predictions | 46, 117 |
| abstract_inverted_index.uncertainty | 71 |
| abstract_inverted_index.performance, | 44 |
| abstract_inverted_index.Partial-label | 18 |
| abstract_inverted_index.perturbations | 134 |
| abstract_inverted_index.perturbations. | 57 |
| abstract_inverted_index.re-distribution | 100 |
| abstract_inverted_index.state-of-the-art | 39 |
| abstract_inverted_index.out-of-distribution | 53, 129 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |