Robust RL with LLM-Driven Data Synthesis and Policy Adaptation for Autonomous Driving Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.12568
The integration of Large Language Models (LLMs) into autonomous driving systems demonstrates strong common sense and reasoning abilities, effectively addressing the pitfalls of purely data-driven methods. Current LLM-based agents require lengthy inference times and face challenges in interacting with real-time autonomous driving environments. A key open question is whether we can effectively leverage the knowledge from LLMs to train an efficient and robust Reinforcement Learning (RL) agent. This paper introduces RAPID, a novel \underline{\textbf{R}}obust \underline{\textbf{A}}daptive \underline{\textbf{P}}olicy \underline{\textbf{I}}nfusion and \underline{\textbf{D}}istillation framework, which trains specialized mix-of-policy RL agents using data synthesized by an LLM-based driving agent and online adaptation. RAPID features three key designs: 1) utilization of offline data collected from an LLM agent to distil expert knowledge into RL policies for faster real-time inference; 2) introduction of robust distillation in RL to inherit both performance and robustness from LLM-based teacher; and 3) employment of a mix-of-policy approach for joint decision decoding with a policy adapter. Through fine-tuning via online environment interaction, RAPID reduces the forgetting of LLM knowledge while maintaining adaptability to different tasks. Extensive experiments demonstrate RAPID's capability to effectively integrate LLM knowledge into scaled-down RL policies in an efficient, adaptable, and robust way. Code and checkpoints will be made publicly available upon acceptance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.12568
- https://arxiv.org/pdf/2410.12568
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403578360
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403578360Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.12568Digital Object Identifier
- Title
-
Robust RL with LLM-Driven Data Synthesis and Policy Adaptation for Autonomous DrivingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Saisai Wu, Jiaxu Liu, Xiangyu Yin, Guangliang Cheng, Fang Meng, Xingyu Zhao, Xinping Yi, Xiaowei HuangList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.12568Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.12568Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.12568Direct OA link when available
- Concepts
-
Adaptation (eye), Computer science, Psychology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403578360 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.12568 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.12568 |
| ids.openalex | https://openalex.org/W4403578360 |
| fwci | |
| type | preprint |
| title | Robust RL with LLM-Driven Data Synthesis and Policy Adaptation for Autonomous Driving |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11195 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9348000288009644 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Simulation Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C139807058 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5876008868217468 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[0].display_name | Adaptation (eye) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4397912919521332 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.16496342420578003 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C169760540 |
| concepts[3].level | 1 |
| concepts[3].score | 0.07730019092559814 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[3].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/adaptation |
| keywords[0].score | 0.5876008868217468 |
| keywords[0].display_name | Adaptation (eye) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4397912919521332 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.16496342420578003 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/neuroscience |
| keywords[3].score | 0.07730019092559814 |
| keywords[3].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.12568 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.12568 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.12568 |
| locations[1].id | doi:10.48550/arxiv.2410.12568 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.12568 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072238082 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4584-6312 |
| authorships[0].author.display_name | Saisai Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Sihao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038889450 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0815-3979 |
| authorships[1].author.display_name | Jiaxu Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Jiaxu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101904222 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8363-648X |
| authorships[2].author.display_name | Xiangyu Yin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yin, Xiangyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045854934 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1428-8848 |
| authorships[3].author.display_name | Guangliang Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Guangliang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5087456682 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7595-5018 |
| authorships[4].author.display_name | Fang Meng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fang, Meng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5115600547 |
| authorships[5].author.orcid | https://orcid.org/0009-0008-3213-0295 |
| authorships[5].author.display_name | Xingyu Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhao, Xingyu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5029033908 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5163-2364 |
| authorships[6].author.display_name | Xinping Yi |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Yi, Xinping |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5083538605 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Xiaowei Huang |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Huang, Xiaowei |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.12568 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-20T00:00:00 |
| display_name | Robust RL with LLM-Driven Data Synthesis and Policy Adaptation for Autonomous Driving |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11195 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9348000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Simulation Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.12568 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.12568 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.12568 |
| primary_location.id | pmh:oai:arXiv.org:2410.12568 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.12568 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.12568 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 43 |
| abstract_inverted_index.a | 71, 143, 151 |
| abstract_inverted_index.1) | 102 |
| abstract_inverted_index.2) | 123 |
| abstract_inverted_index.3) | 140 |
| abstract_inverted_index.RL | 84, 117, 129, 185 |
| abstract_inverted_index.an | 59, 90, 109, 188 |
| abstract_inverted_index.be | 198 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.in | 36, 128, 187 |
| abstract_inverted_index.is | 47 |
| abstract_inverted_index.of | 2, 22, 104, 125, 142, 164 |
| abstract_inverted_index.to | 57, 112, 130, 170, 178 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.LLM | 110, 165, 181 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 15, 33, 61, 77, 94, 134, 139, 191, 195 |
| abstract_inverted_index.can | 50 |
| abstract_inverted_index.for | 119, 146 |
| abstract_inverted_index.key | 44, 100 |
| abstract_inverted_index.the | 20, 53, 162 |
| abstract_inverted_index.via | 156 |
| abstract_inverted_index.(RL) | 65 |
| abstract_inverted_index.Code | 194 |
| abstract_inverted_index.LLMs | 56 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.both | 132 |
| abstract_inverted_index.data | 87, 106 |
| abstract_inverted_index.face | 34 |
| abstract_inverted_index.from | 55, 108, 136 |
| abstract_inverted_index.into | 7, 116, 183 |
| abstract_inverted_index.made | 199 |
| abstract_inverted_index.open | 45 |
| abstract_inverted_index.upon | 202 |
| abstract_inverted_index.way. | 193 |
| abstract_inverted_index.will | 197 |
| abstract_inverted_index.with | 38, 150 |
| abstract_inverted_index.Large | 3 |
| abstract_inverted_index.RAPID | 97, 160 |
| abstract_inverted_index.agent | 93, 111 |
| abstract_inverted_index.joint | 147 |
| abstract_inverted_index.novel | 72 |
| abstract_inverted_index.paper | 68 |
| abstract_inverted_index.sense | 14 |
| abstract_inverted_index.three | 99 |
| abstract_inverted_index.times | 32 |
| abstract_inverted_index.train | 58 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.which | 80 |
| abstract_inverted_index.while | 167 |
| abstract_inverted_index.(LLMs) | 6 |
| abstract_inverted_index.Models | 5 |
| abstract_inverted_index.RAPID, | 70 |
| abstract_inverted_index.agent. | 66 |
| abstract_inverted_index.agents | 28, 85 |
| abstract_inverted_index.common | 13 |
| abstract_inverted_index.distil | 113 |
| abstract_inverted_index.expert | 114 |
| abstract_inverted_index.faster | 120 |
| abstract_inverted_index.online | 95, 157 |
| abstract_inverted_index.policy | 152 |
| abstract_inverted_index.purely | 23 |
| abstract_inverted_index.robust | 62, 126, 192 |
| abstract_inverted_index.strong | 12 |
| abstract_inverted_index.tasks. | 172 |
| abstract_inverted_index.trains | 81 |
| abstract_inverted_index.Current | 26 |
| abstract_inverted_index.RAPID's | 176 |
| abstract_inverted_index.Through | 154 |
| abstract_inverted_index.driving | 9, 41, 92 |
| abstract_inverted_index.inherit | 131 |
| abstract_inverted_index.lengthy | 30 |
| abstract_inverted_index.offline | 105 |
| abstract_inverted_index.reduces | 161 |
| abstract_inverted_index.require | 29 |
| abstract_inverted_index.systems | 10 |
| abstract_inverted_index.whether | 48 |
| abstract_inverted_index.Language | 4 |
| abstract_inverted_index.Learning | 64 |
| abstract_inverted_index.adapter. | 153 |
| abstract_inverted_index.approach | 145 |
| abstract_inverted_index.decision | 148 |
| abstract_inverted_index.decoding | 149 |
| abstract_inverted_index.designs: | 101 |
| abstract_inverted_index.features | 98 |
| abstract_inverted_index.leverage | 52 |
| abstract_inverted_index.methods. | 25 |
| abstract_inverted_index.pitfalls | 21 |
| abstract_inverted_index.policies | 118, 186 |
| abstract_inverted_index.publicly | 200 |
| abstract_inverted_index.question | 46 |
| abstract_inverted_index.teacher; | 138 |
| abstract_inverted_index.Extensive | 173 |
| abstract_inverted_index.LLM-based | 27, 91, 137 |
| abstract_inverted_index.available | 201 |
| abstract_inverted_index.collected | 107 |
| abstract_inverted_index.different | 171 |
| abstract_inverted_index.efficient | 60 |
| abstract_inverted_index.inference | 31 |
| abstract_inverted_index.integrate | 180 |
| abstract_inverted_index.knowledge | 54, 115, 166, 182 |
| abstract_inverted_index.real-time | 39, 121 |
| abstract_inverted_index.reasoning | 16 |
| abstract_inverted_index.abilities, | 17 |
| abstract_inverted_index.adaptable, | 190 |
| abstract_inverted_index.addressing | 19 |
| abstract_inverted_index.autonomous | 8, 40 |
| abstract_inverted_index.capability | 177 |
| abstract_inverted_index.challenges | 35 |
| abstract_inverted_index.efficient, | 189 |
| abstract_inverted_index.employment | 141 |
| abstract_inverted_index.forgetting | 163 |
| abstract_inverted_index.framework, | 79 |
| abstract_inverted_index.inference; | 122 |
| abstract_inverted_index.introduces | 69 |
| abstract_inverted_index.robustness | 135 |
| abstract_inverted_index.acceptance. | 203 |
| abstract_inverted_index.adaptation. | 96 |
| abstract_inverted_index.checkpoints | 196 |
| abstract_inverted_index.data-driven | 24 |
| abstract_inverted_index.demonstrate | 175 |
| abstract_inverted_index.effectively | 18, 51, 179 |
| abstract_inverted_index.environment | 158 |
| abstract_inverted_index.experiments | 174 |
| abstract_inverted_index.fine-tuning | 155 |
| abstract_inverted_index.integration | 1 |
| abstract_inverted_index.interacting | 37 |
| abstract_inverted_index.maintaining | 168 |
| abstract_inverted_index.performance | 133 |
| abstract_inverted_index.scaled-down | 184 |
| abstract_inverted_index.specialized | 82 |
| abstract_inverted_index.synthesized | 88 |
| abstract_inverted_index.utilization | 103 |
| abstract_inverted_index.adaptability | 169 |
| abstract_inverted_index.demonstrates | 11 |
| abstract_inverted_index.distillation | 127 |
| abstract_inverted_index.interaction, | 159 |
| abstract_inverted_index.introduction | 124 |
| abstract_inverted_index.Reinforcement | 63 |
| abstract_inverted_index.environments. | 42 |
| abstract_inverted_index.mix-of-policy | 83, 144 |
| abstract_inverted_index.\underline{\textbf{P}}olicy | 75 |
| abstract_inverted_index.\underline{\textbf{R}}obust | 73 |
| abstract_inverted_index.\underline{\textbf{A}}daptive | 74 |
| abstract_inverted_index.\underline{\textbf{I}}nfusion | 76 |
| abstract_inverted_index.\underline{\textbf{D}}istillation | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |