Robust techno-economic optimization of energy hubs under uncertainty using active learning with artificial neural networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-12358-z
Energy hubs (EHs) are considered a promising solution for multi-energy resources, providing advanced system efficiency and resilience. However, their operation is often challenged by the need for techno-economic trade-offs and the uncertainties related to supply and demand. This research presents a multi-objective optimizing framework for EH operations tackling these techno-economic aspects under uncertainty. Utilizing artificial neural networks (ANN)-based active learning (AL), the proposed approach dynamically enhances the model’s capability to achieve optimal scheduling and planning while considering complex, fluctuating energy demands and system constraints. The optimization approach under uncertainty provides robust predictive abilities across various scenarios, allowing the system to optimize energy management effectively, enhancing operational efficiency while minimizing overall energy losses, costs, and emissions. Results demonstrate significant improvements in system reliability, cost efficiency, and flexible operation, validating the effectiveness of ANN-based AL to optimize EHs management and ensure sustainable operation complexities. The AL algorithm enhances the ANN model’s predictive ability, resulting in a 57.9% decrease in operating costs and a 0.010682 loss of energy supply probability (LESP) value. It ensures energy efficiency while sustaining system flexibility, adapting to frequent load dynamics and intermittent renewable energy supply. The algorithm minimizes electrical and thermal deviations, achieving a balance of flexible operation with efficient energy management. Despite uncertainties and intermittent renewable energy supply, the AL optimizes renewables utilization and demand adjustments, reducing energy losses, costs, and emissions by 80.3The optimized system achieves an output of 13,687.8 kW per day. The system’s implementation is performed using MATLAB R2023b software, ensuring precision and efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-12358-z
- https://www.nature.com/articles/s41598-025-12358-z.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412670157
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412670157Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-12358-zDigital Object Identifier
- Title
-
Robust techno-economic optimization of energy hubs under uncertainty using active learning with artificial neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-26Full publication date if available
- Authors
-
Aya M.A. Heikal, Shady H. E. Abdel Aleem, Ragab A. El‐Sehiemy, Almoataz Y. AbdelazizList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-12358-zPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-12358-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-12358-z.pdfDirect OA link when available
- Concepts
-
Computer science, Flexibility (engineering), Renewable energy, Efficient energy use, Energy supply, Energy management, Artificial neural network, Scheduling (production processes), Mathematical optimization, Reliability engineering, Energy (signal processing), Engineering, Artificial intelligence, Statistics, Electrical engineering, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412670157 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-12358-z |
| ids.doi | https://doi.org/10.1038/s41598-025-12358-z |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40715280 |
| ids.openalex | https://openalex.org/W4412670157 |
| fwci | 2.02156574 |
| type | article |
| title | Robust techno-economic optimization of energy hubs under uncertainty using active learning with artificial neural networks |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 27197 |
| biblio.first_page | 27197 |
| topics[0].id | https://openalex.org/T11185 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Integrated Energy Systems Optimization |
| topics[1].id | https://openalex.org/T10424 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electric Power System Optimization |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| funders[0].id | https://openalex.org/F4320327742 |
| funders[0].ror | https://ror.org/04091f946 |
| funders[0].display_name | Széchenyi István Egyetem |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6763763427734375 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780598303 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6382651925086975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q65921492 |
| concepts[1].display_name | Flexibility (engineering) |
| concepts[2].id | https://openalex.org/C188573790 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6198983192443848 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12705 |
| concepts[2].display_name | Renewable energy |
| concepts[3].id | https://openalex.org/C2742236 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5518015623092651 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q924713 |
| concepts[3].display_name | Efficient energy use |
| concepts[4].id | https://openalex.org/C2776190866 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5267738103866577 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1341477 |
| concepts[4].display_name | Energy supply |
| concepts[5].id | https://openalex.org/C7817414 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4792994558811188 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1779504 |
| concepts[5].display_name | Energy management |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47352004051208496 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C206729178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42145836353302 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[7].display_name | Scheduling (production processes) |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39990296959877014 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C200601418 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39779266715049744 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2193887 |
| concepts[9].display_name | Reliability engineering |
| concepts[10].id | https://openalex.org/C186370098 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35612404346466064 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[10].display_name | Energy (signal processing) |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16515937447547913 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.14341282844543457 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6763763427734375 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/flexibility |
| keywords[1].score | 0.6382651925086975 |
| keywords[1].display_name | Flexibility (engineering) |
| keywords[2].id | https://openalex.org/keywords/renewable-energy |
| keywords[2].score | 0.6198983192443848 |
| keywords[2].display_name | Renewable energy |
| keywords[3].id | https://openalex.org/keywords/efficient-energy-use |
| keywords[3].score | 0.5518015623092651 |
| keywords[3].display_name | Efficient energy use |
| keywords[4].id | https://openalex.org/keywords/energy-supply |
| keywords[4].score | 0.5267738103866577 |
| keywords[4].display_name | Energy supply |
| keywords[5].id | https://openalex.org/keywords/energy-management |
| keywords[5].score | 0.4792994558811188 |
| keywords[5].display_name | Energy management |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.47352004051208496 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/scheduling |
| keywords[7].score | 0.42145836353302 |
| keywords[7].display_name | Scheduling (production processes) |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.39990296959877014 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/reliability-engineering |
| keywords[9].score | 0.39779266715049744 |
| keywords[9].display_name | Reliability engineering |
| keywords[10].id | https://openalex.org/keywords/energy |
| keywords[10].score | 0.35612404346466064 |
| keywords[10].display_name | Energy (signal processing) |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.16515937447547913 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.14341282844543457 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-12358-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-12358-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-12358-z |
| locations[1].id | pmid:40715280 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40715280 |
| locations[2].id | pmh:oai:doaj.org/article:b4e0da15e1c646a3b8351f94289d7679 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-26 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/b4e0da15e1c646a3b8351f94289d7679 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12297403 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12297403 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5080562640 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aya M.A. Heikal |
| authorships[0].countries | EG |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Science Valley Academy, El-Obour City, Egypt. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I107720978 |
| authorships[0].affiliations[1].raw_affiliation_string | Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt. |
| authorships[0].institutions[0].id | https://openalex.org/I107720978 |
| authorships[0].institutions[0].ror | https://ror.org/00cb9w016 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I107720978 |
| authorships[0].institutions[0].country_code | EG |
| authorships[0].institutions[0].display_name | Ain Shams University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aya M A Heikal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Science Valley Academy, El-Obour City, Egypt., Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt. |
| authorships[1].author.id | https://openalex.org/A5039226970 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2546-6352 |
| authorships[1].author.display_name | Shady H. E. Abdel Aleem |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Institute of Aviation Engineering and Technology, Giza, 12658, Egypt. |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shady H E Abdel Aleem |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, Institute of Aviation Engineering and Technology, Giza, 12658, Egypt. |
| authorships[2].author.id | https://openalex.org/A5019940948 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3340-4031 |
| authorships[2].author.display_name | Ragab A. El‐Sehiemy |
| authorships[2].countries | EG, HU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83579964 |
| authorships[2].affiliations[0].raw_affiliation_string | Sustainability Competence Centre, Széchenyi István University, Egyetem square 1, Győr, H-9026, Hungary. [email protected]. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I130309236 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt. [email protected]. |
| authorships[2].institutions[0].id | https://openalex.org/I130309236 |
| authorships[2].institutions[0].ror | https://ror.org/04a97mm30 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130309236 |
| authorships[2].institutions[0].country_code | EG |
| authorships[2].institutions[0].display_name | Kafrelsheikh University |
| authorships[2].institutions[1].id | https://openalex.org/I83579964 |
| authorships[2].institutions[1].ror | https://ror.org/04091f946 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I83579964 |
| authorships[2].institutions[1].country_code | HU |
| authorships[2].institutions[1].display_name | Széchenyi István University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ragab A El-Sehiemy |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt. [email protected]., Sustainability Competence Centre, Széchenyi István University, Egyetem square 1, Győr, H-9026, Hungary. [email protected]. |
| authorships[3].author.id | https://openalex.org/A5099646931 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Almoataz Y. Abdelaziz |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I107720978 |
| authorships[3].affiliations[0].raw_affiliation_string | Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I186217134 |
| authorships[3].affiliations[1].raw_affiliation_string | Faculty of Engineering & Technology, Future University in Egypt, Cairo, 11835, Egypt. |
| authorships[3].institutions[0].id | https://openalex.org/I107720978 |
| authorships[3].institutions[0].ror | https://ror.org/00cb9w016 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I107720978 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | Ain Shams University |
| authorships[3].institutions[1].id | https://openalex.org/I186217134 |
| authorships[3].institutions[1].ror | https://ror.org/03s8c2x09 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I186217134 |
| authorships[3].institutions[1].country_code | EG |
| authorships[3].institutions[1].display_name | Future University in Egypt |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Almoataz Y Abdelaziz |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Electrical Power & Machines Department, Faculty of Engineering, Ain Shams University, Cairo, 11517, Egypt., Faculty of Engineering & Technology, Future University in Egypt, Cairo, 11835, Egypt. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-12358-z.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robust techno-economic optimization of energy hubs under uncertainty using active learning with artificial neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11185 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Integrated Energy Systems Optimization |
| related_works | https://openalex.org/W3017124762, https://openalex.org/W3097919110, https://openalex.org/W2710710002, https://openalex.org/W2021194995, https://openalex.org/W4221107878, https://openalex.org/W4220683285, https://openalex.org/W4212924852, https://openalex.org/W3126713256, https://openalex.org/W3207683219, https://openalex.org/W2606841152 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-12358-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-12358-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-12358-z |
| primary_location.id | doi:10.1038/s41598-025-12358-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-12358-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-12358-z |
| publication_date | 2025-07-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4316660977, https://openalex.org/W3196803426, https://openalex.org/W2573521035, https://openalex.org/W4297105498, https://openalex.org/W4321793567, https://openalex.org/W4398194826, https://openalex.org/W4311088847, https://openalex.org/W3184018118, https://openalex.org/W4403844968, https://openalex.org/W4406015247, https://openalex.org/W4401223695, https://openalex.org/W2944813597, https://openalex.org/W4390506881, https://openalex.org/W2774966631, https://openalex.org/W4205474888, https://openalex.org/W2984252744, https://openalex.org/W4386812101, https://openalex.org/W4386601895, https://openalex.org/W4385191490, https://openalex.org/W4403029422, https://openalex.org/W4399360079, https://openalex.org/W3175526975, https://openalex.org/W4307816423, https://openalex.org/W4403829457, https://openalex.org/W4388510620, https://openalex.org/W4389728230, https://openalex.org/W4386133781, https://openalex.org/W4392195717, https://openalex.org/W4406601813, https://openalex.org/W4406002696, https://openalex.org/W4401903977, https://openalex.org/W4308844416, https://openalex.org/W4224252905, https://openalex.org/W4214725922, https://openalex.org/W4220852592, https://openalex.org/W3171763013, https://openalex.org/W4387859905, https://openalex.org/W4384557702, https://openalex.org/W4308872178, https://openalex.org/W3186740596, https://openalex.org/W4327813767, https://openalex.org/W4385740669, https://openalex.org/W4283584912, https://openalex.org/W2006586426, https://openalex.org/W4309787144, https://openalex.org/W4319296823, https://openalex.org/W4281557256, https://openalex.org/W3014672219, https://openalex.org/W3128109447 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 6, 41, 154, 161, 196 |
| abstract_inverted_index.AL | 133, 144, 213 |
| abstract_inverted_index.EH | 46 |
| abstract_inverted_index.It | 170 |
| abstract_inverted_index.an | 231 |
| abstract_inverted_index.by | 24, 226 |
| abstract_inverted_index.in | 120, 153, 157 |
| abstract_inverted_index.is | 21, 241 |
| abstract_inverted_index.kW | 235 |
| abstract_inverted_index.of | 131, 164, 198, 233 |
| abstract_inverted_index.to | 34, 70, 100, 134, 179 |
| abstract_inverted_index.ANN | 148 |
| abstract_inverted_index.EHs | 136 |
| abstract_inverted_index.The | 85, 143, 188, 238 |
| abstract_inverted_index.and | 16, 30, 36, 74, 82, 114, 125, 138, 160, 183, 192, 207, 217, 224, 249 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 9, 27, 45 |
| abstract_inverted_index.per | 236 |
| abstract_inverted_index.the | 25, 31, 62, 67, 98, 129, 147, 212 |
| abstract_inverted_index.This | 38 |
| abstract_inverted_index.cost | 123 |
| abstract_inverted_index.day. | 237 |
| abstract_inverted_index.hubs | 2 |
| abstract_inverted_index.load | 181 |
| abstract_inverted_index.loss | 163 |
| abstract_inverted_index.need | 26 |
| abstract_inverted_index.with | 201 |
| abstract_inverted_index.(AL), | 61 |
| abstract_inverted_index.(EHs) | 3 |
| abstract_inverted_index.57.9% | 155 |
| abstract_inverted_index.costs | 159 |
| abstract_inverted_index.often | 22 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.under | 52, 88 |
| abstract_inverted_index.using | 243 |
| abstract_inverted_index.while | 76, 108, 174 |
| abstract_inverted_index.(LESP) | 168 |
| abstract_inverted_index.Energy | 1 |
| abstract_inverted_index.MATLAB | 244 |
| abstract_inverted_index.R2023b | 245 |
| abstract_inverted_index.across | 94 |
| abstract_inverted_index.active | 59 |
| abstract_inverted_index.costs, | 113, 223 |
| abstract_inverted_index.demand | 218 |
| abstract_inverted_index.energy | 80, 102, 111, 165, 172, 186, 203, 210, 221 |
| abstract_inverted_index.ensure | 139 |
| abstract_inverted_index.neural | 56 |
| abstract_inverted_index.output | 232 |
| abstract_inverted_index.robust | 91 |
| abstract_inverted_index.supply | 35, 166 |
| abstract_inverted_index.system | 14, 83, 99, 121, 176, 229 |
| abstract_inverted_index.value. | 169 |
| abstract_inverted_index.80.3The | 227 |
| abstract_inverted_index.Despite | 205 |
| abstract_inverted_index.Results | 116 |
| abstract_inverted_index.achieve | 71 |
| abstract_inverted_index.aspects | 51 |
| abstract_inverted_index.balance | 197 |
| abstract_inverted_index.demand. | 37 |
| abstract_inverted_index.demands | 81 |
| abstract_inverted_index.ensures | 171 |
| abstract_inverted_index.losses, | 112, 222 |
| abstract_inverted_index.optimal | 72 |
| abstract_inverted_index.overall | 110 |
| abstract_inverted_index.related | 33 |
| abstract_inverted_index.supply, | 211 |
| abstract_inverted_index.supply. | 187 |
| abstract_inverted_index.thermal | 193 |
| abstract_inverted_index.various | 95 |
| abstract_inverted_index.0.010682 | 162 |
| abstract_inverted_index.13,687.8 | 234 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.ability, | 151 |
| abstract_inverted_index.achieves | 230 |
| abstract_inverted_index.adapting | 178 |
| abstract_inverted_index.advanced | 13 |
| abstract_inverted_index.allowing | 97 |
| abstract_inverted_index.approach | 64, 87 |
| abstract_inverted_index.complex, | 78 |
| abstract_inverted_index.decrease | 156 |
| abstract_inverted_index.dynamics | 182 |
| abstract_inverted_index.enhances | 66, 146 |
| abstract_inverted_index.ensuring | 247 |
| abstract_inverted_index.flexible | 126, 199 |
| abstract_inverted_index.frequent | 180 |
| abstract_inverted_index.learning | 60 |
| abstract_inverted_index.networks | 57 |
| abstract_inverted_index.optimize | 101, 135 |
| abstract_inverted_index.planning | 75 |
| abstract_inverted_index.presents | 40 |
| abstract_inverted_index.proposed | 63 |
| abstract_inverted_index.provides | 90 |
| abstract_inverted_index.reducing | 220 |
| abstract_inverted_index.research | 39 |
| abstract_inverted_index.solution | 8 |
| abstract_inverted_index.tackling | 48 |
| abstract_inverted_index.ANN-based | 132 |
| abstract_inverted_index.Utilizing | 54 |
| abstract_inverted_index.abilities | 93 |
| abstract_inverted_index.achieving | 195 |
| abstract_inverted_index.algorithm | 145, 189 |
| abstract_inverted_index.efficient | 202 |
| abstract_inverted_index.emissions | 225 |
| abstract_inverted_index.enhancing | 105 |
| abstract_inverted_index.framework | 44 |
| abstract_inverted_index.minimizes | 190 |
| abstract_inverted_index.model’s | 68, 149 |
| abstract_inverted_index.operating | 158 |
| abstract_inverted_index.operation | 20, 141, 200 |
| abstract_inverted_index.optimized | 228 |
| abstract_inverted_index.optimizes | 214 |
| abstract_inverted_index.performed | 242 |
| abstract_inverted_index.precision | 248 |
| abstract_inverted_index.promising | 7 |
| abstract_inverted_index.providing | 12 |
| abstract_inverted_index.renewable | 185, 209 |
| abstract_inverted_index.resulting | 152 |
| abstract_inverted_index.software, | 246 |
| abstract_inverted_index.artificial | 55 |
| abstract_inverted_index.capability | 69 |
| abstract_inverted_index.challenged | 23 |
| abstract_inverted_index.considered | 5 |
| abstract_inverted_index.efficiency | 15, 107, 173 |
| abstract_inverted_index.electrical | 191 |
| abstract_inverted_index.emissions. | 115 |
| abstract_inverted_index.management | 103, 137 |
| abstract_inverted_index.minimizing | 109 |
| abstract_inverted_index.operation, | 127 |
| abstract_inverted_index.operations | 47 |
| abstract_inverted_index.optimizing | 43 |
| abstract_inverted_index.predictive | 92, 150 |
| abstract_inverted_index.renewables | 215 |
| abstract_inverted_index.resources, | 11 |
| abstract_inverted_index.scenarios, | 96 |
| abstract_inverted_index.scheduling | 73 |
| abstract_inverted_index.sustaining | 175 |
| abstract_inverted_index.system’s | 239 |
| abstract_inverted_index.trade-offs | 29 |
| abstract_inverted_index.validating | 128 |
| abstract_inverted_index.(ANN)-based | 58 |
| abstract_inverted_index.considering | 77 |
| abstract_inverted_index.demonstrate | 117 |
| abstract_inverted_index.deviations, | 194 |
| abstract_inverted_index.dynamically | 65 |
| abstract_inverted_index.efficiency, | 124 |
| abstract_inverted_index.efficiency. | 250 |
| abstract_inverted_index.fluctuating | 79 |
| abstract_inverted_index.management. | 204 |
| abstract_inverted_index.operational | 106 |
| abstract_inverted_index.probability | 167 |
| abstract_inverted_index.resilience. | 17 |
| abstract_inverted_index.significant | 118 |
| abstract_inverted_index.sustainable | 140 |
| abstract_inverted_index.uncertainty | 89 |
| abstract_inverted_index.utilization | 216 |
| abstract_inverted_index.adjustments, | 219 |
| abstract_inverted_index.constraints. | 84 |
| abstract_inverted_index.effectively, | 104 |
| abstract_inverted_index.flexibility, | 177 |
| abstract_inverted_index.improvements | 119 |
| abstract_inverted_index.intermittent | 184, 208 |
| abstract_inverted_index.multi-energy | 10 |
| abstract_inverted_index.optimization | 86 |
| abstract_inverted_index.reliability, | 122 |
| abstract_inverted_index.uncertainty. | 53 |
| abstract_inverted_index.complexities. | 142 |
| abstract_inverted_index.effectiveness | 130 |
| abstract_inverted_index.uncertainties | 32, 206 |
| abstract_inverted_index.implementation | 240 |
| abstract_inverted_index.multi-objective | 42 |
| abstract_inverted_index.techno-economic | 28, 50 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.83084346 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |