Robustifying the Multi-Scale Representation of Neural Radiance Fields Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.04233
Neural Radiance Fields (NeRF) recently emerged as a new paradigm for object representation from multi-view (MV) images. Yet, it cannot handle multi-scale (MS) images and camera pose estimation errors, which generally is the case with multi-view images captured from a day-to-day commodity camera. Although recently proposed Mip-NeRF could handle multi-scale imaging problems with NeRF, it cannot handle camera pose estimation error. On the other hand, the newly proposed BARF can solve the camera pose problem with NeRF but fails if the images are multi-scale in nature. This paper presents a robust multi-scale neural radiance fields representation approach to simultaneously overcome both real-world imaging issues. Our method handles multi-scale imaging effects and camera-pose estimation problems with NeRF-inspired approaches by leveraging the fundamentals of scene rigidity. To reduce unpleasant aliasing artifacts due to multi-scale images in the ray space, we leverage Mip-NeRF multi-scale representation. For joint estimation of robust camera pose, we propose graph-neural network-based multiple motion averaging in the neural volume rendering framework. We demonstrate, with examples, that for an accurate neural representation of an object from day-to-day acquired multi-view images, it is crucial to have precise camera-pose estimates. Without considering robustness measures in the camera pose estimation, modeling for multi-scale aliasing artifacts via conical frustum can be counterproductive. We present extensive experiments on the benchmark datasets to demonstrate that our approach provides better results than the recent NeRF-inspired approaches for such realistic settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2210.04233
- https://arxiv.org/pdf/2210.04233
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4304701439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4304701439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2210.04233Digital Object Identifier
- Title
-
Robustifying the Multi-Scale Representation of Neural Radiance FieldsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-09Full publication date if available
- Authors
-
Nishant Jain, Suryansh Kumar, Luc Van GoolList of authors in order
- Landing page
-
https://arxiv.org/abs/2210.04233Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2210.04233Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.04233Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Computer vision, Pose, Rendering (computer graphics), Intrinsics, Robustness (evolution), Radiance, Gene, Chemistry, Biochemistry, Physics, OpticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 5Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4304701439 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2210.04233 |
| ids.doi | https://doi.org/10.48550/arxiv.2210.04233 |
| ids.openalex | https://openalex.org/W4304701439 |
| fwci | |
| type | preprint |
| title | Robustifying the Multi-Scale Representation of Neural Radiance Fields |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.762814998626709 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7138233184814453 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6936753988265991 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C52102323 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6226208806037903 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1671968 |
| concepts[3].display_name | Pose |
| concepts[4].id | https://openalex.org/C205711294 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4860385060310364 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[4].display_name | Rendering (computer graphics) |
| concepts[5].id | https://openalex.org/C2908650547 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4839820861816406 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q20999234 |
| concepts[5].display_name | Intrinsics |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.47251591086387634 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C23690007 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4300568997859955 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1411145 |
| concepts[7].display_name | Radiance |
| concepts[8].id | https://openalex.org/C104317684 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[8].display_name | Gene |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C120665830 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[12].display_name | Optics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.762814998626709 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7138233184814453 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.6936753988265991 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/pose |
| keywords[3].score | 0.6226208806037903 |
| keywords[3].display_name | Pose |
| keywords[4].id | https://openalex.org/keywords/rendering |
| keywords[4].score | 0.4860385060310364 |
| keywords[4].display_name | Rendering (computer graphics) |
| keywords[5].id | https://openalex.org/keywords/intrinsics |
| keywords[5].score | 0.4839820861816406 |
| keywords[5].display_name | Intrinsics |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.47251591086387634 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/radiance |
| keywords[7].score | 0.4300568997859955 |
| keywords[7].display_name | Radiance |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2210.04233 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2210.04233 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2210.04233 |
| locations[1].id | doi:10.48550/arxiv.2210.04233 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2210.04233 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5073570615 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3260-2543 |
| authorships[0].author.display_name | Nishant Jain |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jain, Nishant |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002526108 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2755-8744 |
| authorships[1].author.display_name | Suryansh Kumar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kumar, Suryansh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001254143 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3445-5711 |
| authorships[2].author.display_name | Luc Van Gool |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Van Gool, Luc |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.04233 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robustifying the Multi-Scale Representation of Neural Radiance Fields |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W1987577928, https://openalex.org/W4387784774, https://openalex.org/W52997880, https://openalex.org/W2896728493, https://openalex.org/W2499900256, https://openalex.org/W199152256, https://openalex.org/W2392142157, https://openalex.org/W2043512367, https://openalex.org/W4321518006, https://openalex.org/W4313046826 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.04233 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.04233 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.04233 |
| primary_location.id | pmh:oai:arXiv.org:2210.04233 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2210.04233 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2210.04233 |
| publication_date | 2022-10-09 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 39, 89 |
| abstract_inverted_index.On | 61 |
| abstract_inverted_index.To | 124 |
| abstract_inverted_index.We | 162, 208 |
| abstract_inverted_index.an | 168, 173 |
| abstract_inverted_index.as | 6 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.by | 117 |
| abstract_inverted_index.if | 79 |
| abstract_inverted_index.in | 84, 133, 156, 192 |
| abstract_inverted_index.is | 31, 181 |
| abstract_inverted_index.it | 18, 54, 180 |
| abstract_inverted_index.of | 121, 145, 172 |
| abstract_inverted_index.on | 212 |
| abstract_inverted_index.to | 97, 130, 183, 216 |
| abstract_inverted_index.we | 137, 149 |
| abstract_inverted_index.For | 142 |
| abstract_inverted_index.Our | 104 |
| abstract_inverted_index.and | 24, 110 |
| abstract_inverted_index.are | 82 |
| abstract_inverted_index.but | 77 |
| abstract_inverted_index.can | 69, 205 |
| abstract_inverted_index.due | 129 |
| abstract_inverted_index.for | 10, 167, 198, 229 |
| abstract_inverted_index.new | 8 |
| abstract_inverted_index.our | 219 |
| abstract_inverted_index.ray | 135 |
| abstract_inverted_index.the | 32, 62, 65, 71, 80, 119, 134, 157, 193, 213, 225 |
| abstract_inverted_index.via | 202 |
| abstract_inverted_index.(MS) | 22 |
| abstract_inverted_index.(MV) | 15 |
| abstract_inverted_index.BARF | 68 |
| abstract_inverted_index.NeRF | 76 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.Yet, | 17 |
| abstract_inverted_index.both | 100 |
| abstract_inverted_index.case | 33 |
| abstract_inverted_index.from | 13, 38, 175 |
| abstract_inverted_index.have | 184 |
| abstract_inverted_index.pose | 26, 58, 73, 195 |
| abstract_inverted_index.such | 230 |
| abstract_inverted_index.than | 224 |
| abstract_inverted_index.that | 166, 218 |
| abstract_inverted_index.with | 34, 52, 75, 114, 164 |
| abstract_inverted_index.NeRF, | 53 |
| abstract_inverted_index.could | 47 |
| abstract_inverted_index.fails | 78 |
| abstract_inverted_index.hand, | 64 |
| abstract_inverted_index.joint | 143 |
| abstract_inverted_index.newly | 66 |
| abstract_inverted_index.other | 63 |
| abstract_inverted_index.paper | 87 |
| abstract_inverted_index.pose, | 148 |
| abstract_inverted_index.scene | 122 |
| abstract_inverted_index.solve | 70 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.(NeRF) | 3 |
| abstract_inverted_index.Fields | 2 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.better | 222 |
| abstract_inverted_index.camera | 25, 57, 72, 147, 194 |
| abstract_inverted_index.cannot | 19, 55 |
| abstract_inverted_index.error. | 60 |
| abstract_inverted_index.fields | 94 |
| abstract_inverted_index.handle | 20, 48, 56 |
| abstract_inverted_index.images | 23, 36, 81, 132 |
| abstract_inverted_index.method | 105 |
| abstract_inverted_index.motion | 154 |
| abstract_inverted_index.neural | 92, 158, 170 |
| abstract_inverted_index.object | 11, 174 |
| abstract_inverted_index.recent | 226 |
| abstract_inverted_index.reduce | 125 |
| abstract_inverted_index.robust | 90, 146 |
| abstract_inverted_index.space, | 136 |
| abstract_inverted_index.volume | 159 |
| abstract_inverted_index.Without | 188 |
| abstract_inverted_index.camera. | 42 |
| abstract_inverted_index.conical | 203 |
| abstract_inverted_index.crucial | 182 |
| abstract_inverted_index.effects | 109 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.errors, | 28 |
| abstract_inverted_index.frustum | 204 |
| abstract_inverted_index.handles | 106 |
| abstract_inverted_index.images, | 179 |
| abstract_inverted_index.images. | 16 |
| abstract_inverted_index.imaging | 50, 102, 108 |
| abstract_inverted_index.issues. | 103 |
| abstract_inverted_index.nature. | 85 |
| abstract_inverted_index.precise | 185 |
| abstract_inverted_index.present | 209 |
| abstract_inverted_index.problem | 74 |
| abstract_inverted_index.propose | 150 |
| abstract_inverted_index.results | 223 |
| abstract_inverted_index.Although | 43 |
| abstract_inverted_index.Mip-NeRF | 46, 139 |
| abstract_inverted_index.Radiance | 1 |
| abstract_inverted_index.accurate | 169 |
| abstract_inverted_index.acquired | 177 |
| abstract_inverted_index.aliasing | 127, 200 |
| abstract_inverted_index.approach | 96, 220 |
| abstract_inverted_index.captured | 37 |
| abstract_inverted_index.datasets | 215 |
| abstract_inverted_index.leverage | 138 |
| abstract_inverted_index.measures | 191 |
| abstract_inverted_index.modeling | 197 |
| abstract_inverted_index.multiple | 153 |
| abstract_inverted_index.overcome | 99 |
| abstract_inverted_index.paradigm | 9 |
| abstract_inverted_index.presents | 88 |
| abstract_inverted_index.problems | 51, 113 |
| abstract_inverted_index.proposed | 45, 67 |
| abstract_inverted_index.provides | 221 |
| abstract_inverted_index.radiance | 93 |
| abstract_inverted_index.recently | 4, 44 |
| abstract_inverted_index.artifacts | 128, 201 |
| abstract_inverted_index.averaging | 155 |
| abstract_inverted_index.benchmark | 214 |
| abstract_inverted_index.commodity | 41 |
| abstract_inverted_index.examples, | 165 |
| abstract_inverted_index.extensive | 210 |
| abstract_inverted_index.generally | 30 |
| abstract_inverted_index.realistic | 231 |
| abstract_inverted_index.rendering | 160 |
| abstract_inverted_index.rigidity. | 123 |
| abstract_inverted_index.settings. | 232 |
| abstract_inverted_index.approaches | 116, 228 |
| abstract_inverted_index.day-to-day | 40, 176 |
| abstract_inverted_index.estimates. | 187 |
| abstract_inverted_index.estimation | 27, 59, 112, 144 |
| abstract_inverted_index.framework. | 161 |
| abstract_inverted_index.leveraging | 118 |
| abstract_inverted_index.multi-view | 14, 35, 178 |
| abstract_inverted_index.real-world | 101 |
| abstract_inverted_index.robustness | 190 |
| abstract_inverted_index.unpleasant | 126 |
| abstract_inverted_index.camera-pose | 111, 186 |
| abstract_inverted_index.considering | 189 |
| abstract_inverted_index.demonstrate | 217 |
| abstract_inverted_index.estimation, | 196 |
| abstract_inverted_index.experiments | 211 |
| abstract_inverted_index.multi-scale | 21, 49, 83, 91, 107, 131, 140, 199 |
| abstract_inverted_index.demonstrate, | 163 |
| abstract_inverted_index.fundamentals | 120 |
| abstract_inverted_index.graph-neural | 151 |
| abstract_inverted_index.NeRF-inspired | 115, 227 |
| abstract_inverted_index.network-based | 152 |
| abstract_inverted_index.representation | 12, 95, 171 |
| abstract_inverted_index.simultaneously | 98 |
| abstract_inverted_index.representation. | 141 |
| abstract_inverted_index.counterproductive. | 207 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |