Robustness of Gaussian Mixture Reduction for Split-and-Conquer Learning of Finite Gaussian Mixtures Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.11159/icsta21.135
In the era of big data, there is an increasing demand for split-and-conquer learning of finite mixture models.Recent work [1] proposes several split-and-conquer approaches for learning finite Gaussian mixtures and they are found to be both statistically and computationally efficient when the order of the mixture is correctly specified.Due to the nature of mixture models, correctly specifying the order of mixture on local machines can be an unrealistic assumption.In this paper, we evaluate the performance of several split-andconquer learning approaches, both when the order is correct and when it is over-specified on the local machines, based on simulations.We find that there is a trade-off between robustness and computational efficiency: the computationally intensive approach is robust against over-specification, while the two computationally friendly approaches have compromised statistical performance when the order is over-specified.The results suggest that the information in the data about the true distribution is not lost in the split step of the learning, and aggregation strategies must be developed in a computationally and statistically efficient way.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.11159/icsta21.135
- https://doi.org/10.11159/icsta21.135
- OA Status
- bronze
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3195273118
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3195273118Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11159/icsta21.135Digital Object Identifier
- Title
-
Robustness of Gaussian Mixture Reduction for Split-and-Conquer Learning of Finite Gaussian MixturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Qiong Zhang, Jiahua ChenList of authors in order
- Landing page
-
https://doi.org/10.11159/icsta21.135Publisher landing page
- PDF URL
-
https://doi.org/10.11159/icsta21.135Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11159/icsta21.135Direct OA link when available
- Concepts
-
Robustness (evolution), Gaussian, Divide and conquer algorithms, Gaussian process, Computer science, Reduction (mathematics), Mathematics, Algorithm, Applied mathematics, Computational chemistry, Chemistry, Geometry, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3195273118 |
|---|---|
| doi | https://doi.org/10.11159/icsta21.135 |
| ids.doi | https://doi.org/10.11159/icsta21.135 |
| ids.mag | 3195273118 |
| ids.openalex | https://openalex.org/W3195273118 |
| fwci | 0.0 |
| type | article |
| title | Robustness of Gaussian Mixture Reduction for Split-and-Conquer Learning of Finite Gaussian Mixtures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9588000178337097 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9261999726295471 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7161808013916016 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C163716315 |
| concepts[1].level | 2 |
| concepts[1].score | 0.710598886013031 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[1].display_name | Gaussian |
| concepts[2].id | https://openalex.org/C71559656 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5698234438896179 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q671298 |
| concepts[2].display_name | Divide and conquer algorithms |
| concepts[3].id | https://openalex.org/C61326573 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5357735753059387 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[3].display_name | Gaussian process |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.522441565990448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C111335779 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4663386046886444 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[5].display_name | Reduction (mathematics) |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.39996933937072754 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3479539453983307 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C28826006 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3369765877723694 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[8].display_name | Applied mathematics |
| concepts[9].id | https://openalex.org/C147597530 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07878696918487549 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q369472 |
| concepts[9].display_name | Computational chemistry |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07651254534721375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07371753454208374 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7161808013916016 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/gaussian |
| keywords[1].score | 0.710598886013031 |
| keywords[1].display_name | Gaussian |
| keywords[2].id | https://openalex.org/keywords/divide-and-conquer-algorithms |
| keywords[2].score | 0.5698234438896179 |
| keywords[2].display_name | Divide and conquer algorithms |
| keywords[3].id | https://openalex.org/keywords/gaussian-process |
| keywords[3].score | 0.5357735753059387 |
| keywords[3].display_name | Gaussian process |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.522441565990448 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/reduction |
| keywords[5].score | 0.4663386046886444 |
| keywords[5].display_name | Reduction (mathematics) |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.39996933937072754 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.3479539453983307 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/applied-mathematics |
| keywords[8].score | 0.3369765877723694 |
| keywords[8].display_name | Applied mathematics |
| keywords[9].id | https://openalex.org/keywords/computational-chemistry |
| keywords[9].score | 0.07878696918487549 |
| keywords[9].display_name | Computational chemistry |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.07651254534721375 |
| keywords[10].display_name | Chemistry |
| keywords[11].id | https://openalex.org/keywords/geometry |
| keywords[11].score | 0.07371753454208374 |
| keywords[11].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.11159/icsta21.135 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4386872458 |
| locations[0].source.issn | 2562-7767 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2562-7767 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.11159/icsta21.135 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Conference on Statistics: Theory and Applications |
| locations[0].landing_page_url | http://doi.org/10.11159/icsta21.135 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5086086243 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9034-682X |
| authorships[0].author.display_name | Qiong Zhang |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, University of British Columbia 3182 Earth Sciences Building, 2207 Main Mall, Vancouver BC, Canada V6T 1Z4 |
| authorships[0].institutions[0].id | https://openalex.org/I141945490 |
| authorships[0].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of British Columbia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiong Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics, University of British Columbia 3182 Earth Sciences Building, 2207 Main Mall, Vancouver BC, Canada V6T 1Z4 |
| authorships[1].author.id | https://openalex.org/A5030780941 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8064-4444 |
| authorships[1].author.display_name | Jiahua Chen |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, University of British Columbia 3182 Earth Sciences Building, 2207 Main Mall, Vancouver BC, Canada V6T 1Z4 |
| authorships[1].institutions[0].id | https://openalex.org/I141945490 |
| authorships[1].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of British Columbia |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jiahua Chen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, University of British Columbia 3182 Earth Sciences Building, 2207 Main Mall, Vancouver BC, Canada V6T 1Z4 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11159/icsta21.135 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Robustness of Gaussian Mixture Reduction for Split-and-Conquer Learning of Finite Gaussian Mixtures |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W4247094814, https://openalex.org/W2352794675, https://openalex.org/W1526989670, https://openalex.org/W108531593, https://openalex.org/W8810113, https://openalex.org/W2158636562, https://openalex.org/W2111712077, https://openalex.org/W2360992027, https://openalex.org/W2169866437, https://openalex.org/W1964286703 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11159/icsta21.135 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4386872458 |
| best_oa_location.source.issn | 2562-7767 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2562-7767 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.11159/icsta21.135 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Conference on Statistics: Theory and Applications |
| best_oa_location.landing_page_url | http://doi.org/10.11159/icsta21.135 |
| primary_location.id | doi:10.11159/icsta21.135 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4386872458 |
| primary_location.source.issn | 2562-7767 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2562-7767 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.11159/icsta21.135 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Conference on Statistics: Theory and Applications |
| primary_location.landing_page_url | http://doi.org/10.11159/icsta21.135 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3093773042, https://openalex.org/W1847890728, https://openalex.org/W6692347190, https://openalex.org/W6676085441, https://openalex.org/W2112014348, https://openalex.org/W1974193495, https://openalex.org/W2806242927, https://openalex.org/W3008784235, https://openalex.org/W2165478976, https://openalex.org/W4248302205, https://openalex.org/W2064014870, https://openalex.org/W4244030505, https://openalex.org/W2963200104, https://openalex.org/W3143528639, https://openalex.org/W3194239492, https://openalex.org/W2108288396, https://openalex.org/W2951468504, https://openalex.org/W2033403400 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 102, 161 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 8, 66 |
| abstract_inverted_index.be | 34, 65, 158 |
| abstract_inverted_index.in | 137, 147, 160 |
| abstract_inverted_index.is | 7, 46, 84, 89, 101, 113, 130, 144 |
| abstract_inverted_index.it | 88 |
| abstract_inverted_index.of | 3, 14, 43, 52, 59, 75, 151 |
| abstract_inverted_index.on | 61, 91, 96 |
| abstract_inverted_index.to | 33, 49 |
| abstract_inverted_index.we | 71 |
| abstract_inverted_index.[1] | 19 |
| abstract_inverted_index.and | 29, 37, 86, 106, 154, 163 |
| abstract_inverted_index.are | 31 |
| abstract_inverted_index.big | 4 |
| abstract_inverted_index.can | 64 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.for | 11, 24 |
| abstract_inverted_index.not | 145 |
| abstract_inverted_index.the | 1, 41, 44, 50, 57, 73, 82, 92, 109, 118, 128, 135, 138, 141, 148, 152 |
| abstract_inverted_index.two | 119 |
| abstract_inverted_index.both | 35, 80 |
| abstract_inverted_index.data | 139 |
| abstract_inverted_index.find | 98 |
| abstract_inverted_index.have | 123 |
| abstract_inverted_index.lost | 146 |
| abstract_inverted_index.must | 157 |
| abstract_inverted_index.step | 150 |
| abstract_inverted_index.that | 99, 134 |
| abstract_inverted_index.they | 30 |
| abstract_inverted_index.this | 69 |
| abstract_inverted_index.true | 142 |
| abstract_inverted_index.way. | 166 |
| abstract_inverted_index.when | 40, 81, 87, 127 |
| abstract_inverted_index.work | 18 |
| abstract_inverted_index.about | 140 |
| abstract_inverted_index.based | 95 |
| abstract_inverted_index.data, | 5 |
| abstract_inverted_index.found | 32 |
| abstract_inverted_index.local | 62, 93 |
| abstract_inverted_index.order | 42, 58, 83, 129 |
| abstract_inverted_index.split | 149 |
| abstract_inverted_index.there | 6, 100 |
| abstract_inverted_index.while | 117 |
| abstract_inverted_index.demand | 10 |
| abstract_inverted_index.finite | 15, 26 |
| abstract_inverted_index.nature | 51 |
| abstract_inverted_index.paper, | 70 |
| abstract_inverted_index.robust | 114 |
| abstract_inverted_index.against | 115 |
| abstract_inverted_index.between | 104 |
| abstract_inverted_index.correct | 85 |
| abstract_inverted_index.mixture | 16, 45, 53, 60 |
| abstract_inverted_index.models, | 54 |
| abstract_inverted_index.results | 132 |
| abstract_inverted_index.several | 21, 76 |
| abstract_inverted_index.suggest | 133 |
| abstract_inverted_index.Gaussian | 27 |
| abstract_inverted_index.approach | 112 |
| abstract_inverted_index.evaluate | 72 |
| abstract_inverted_index.friendly | 121 |
| abstract_inverted_index.learning | 13, 25, 78 |
| abstract_inverted_index.machines | 63 |
| abstract_inverted_index.mixtures | 28 |
| abstract_inverted_index.proposes | 20 |
| abstract_inverted_index.correctly | 47, 55 |
| abstract_inverted_index.developed | 159 |
| abstract_inverted_index.efficient | 39, 165 |
| abstract_inverted_index.intensive | 111 |
| abstract_inverted_index.learning, | 153 |
| abstract_inverted_index.machines, | 94 |
| abstract_inverted_index.trade-off | 103 |
| abstract_inverted_index.approaches | 23, 122 |
| abstract_inverted_index.increasing | 9 |
| abstract_inverted_index.robustness | 105 |
| abstract_inverted_index.specifying | 56 |
| abstract_inverted_index.strategies | 156 |
| abstract_inverted_index.aggregation | 155 |
| abstract_inverted_index.approaches, | 79 |
| abstract_inverted_index.compromised | 124 |
| abstract_inverted_index.efficiency: | 108 |
| abstract_inverted_index.information | 136 |
| abstract_inverted_index.performance | 74, 126 |
| abstract_inverted_index.statistical | 125 |
| abstract_inverted_index.unrealistic | 67 |
| abstract_inverted_index.distribution | 143 |
| abstract_inverted_index.assumption.In | 68 |
| abstract_inverted_index.computational | 107 |
| abstract_inverted_index.models.Recent | 17 |
| abstract_inverted_index.specified.Due | 48 |
| abstract_inverted_index.statistically | 36, 164 |
| abstract_inverted_index.over-specified | 90 |
| abstract_inverted_index.simulations.We | 97 |
| abstract_inverted_index.computationally | 38, 110, 120, 162 |
| abstract_inverted_index.split-andconquer | 77 |
| abstract_inverted_index.split-and-conquer | 12, 22 |
| abstract_inverted_index.over-specified.The | 131 |
| abstract_inverted_index.over-specification, | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.07963446 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |