ROI-Based Multimodal Neuroimaging Feature Fusion Method and Its Graph Neural Network Diagnostic Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3435433
Single-modality neuroimaging data often provide limited information and are constrained by technical issues such as signal-to-noise ratio, and resolution limitations, potentially leading to biases and an incomplete understanding of brain complexities. This can hinder the development of diagnostic and therapeutic strategies for brain disorders. To address these challenges, this paper presents the Multimodal Graph Neural Network Model based on Feature Fusion (MMP-DGNN), which leverages sMRI and PET data. The model employs an algorithm to extract and accurately describe sample features using an autoencoder. During feature fusion, a shared adjacency matrix based on feature similarity and phenotypic data is constructed for graph representation. A dual-layer graph neural network then classifies the features, with the results fused at the decision layer for final classification. Experimental results show that MMP-DGNN achieves superior classification performance of 98.17%, outperforming other methods in multimodal neuroimaging data classification.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3435433
- OA Status
- gold
- Cited By
- 2
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401069948
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401069948Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3435433Digital Object Identifier
- Title
-
ROI-Based Multimodal Neuroimaging Feature Fusion Method and Its Graph Neural Network Diagnostic ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-29Full publication date if available
- Authors
-
Xuan Wang, Xiaopeng Yang, Xiaotong Zhang, Yang ChenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3435433Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3435433Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Neuroimaging, Pattern recognition (psychology), Artificial neural network, Feature (linguistics), Autoencoder, Graph, Machine learning, Adjacency matrix, Sensor fusion, Theoretical computer science, Psychiatry, Philosophy, Psychology, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401069948 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3435433 |
| ids.doi | https://doi.org/10.1109/access.2024.3435433 |
| ids.openalex | https://openalex.org/W4401069948 |
| fwci | 1.03509663 |
| type | article |
| title | ROI-Based Multimodal Neuroimaging Feature Fusion Method and Its Graph Neural Network Diagnostic Model |
| awards[0].id | https://openalex.org/G1419512687 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018YFA0801402 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G453614102 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61971031 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 26926 |
| biblio.first_page | 26915 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10429 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9648000001907349 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | EEG and Brain-Computer Interfaces |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9624999761581421 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7750086784362793 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7182928919792175 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C58693492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6723574995994568 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[2].display_name | Neuroimaging |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5467889308929443 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5260013341903687 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5187778472900391 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C101738243 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4530111253261566 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[6].display_name | Autoencoder |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45102187991142273 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.44587987661361694 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C180356752 |
| concepts[9].level | 3 |
| concepts[9].score | 0.44483277201652527 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q727035 |
| concepts[9].display_name | Adjacency matrix |
| concepts[10].id | https://openalex.org/C33954974 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42240598797798157 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[10].display_name | Sensor fusion |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07968559861183167 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7750086784362793 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7182928919792175 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/neuroimaging |
| keywords[2].score | 0.6723574995994568 |
| keywords[2].display_name | Neuroimaging |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.5467889308929443 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.5260013341903687 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5187778472900391 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/autoencoder |
| keywords[6].score | 0.4530111253261566 |
| keywords[6].display_name | Autoencoder |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.45102187991142273 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.44587987661361694 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/adjacency-matrix |
| keywords[9].score | 0.44483277201652527 |
| keywords[9].display_name | Adjacency matrix |
| keywords[10].id | https://openalex.org/keywords/sensor-fusion |
| keywords[10].score | 0.42240598797798157 |
| keywords[10].display_name | Sensor fusion |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.07968559861183167 |
| keywords[11].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3435433 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3435433 |
| locations[1].id | pmh:oai:doaj.org/article:3b0ae9cf25b24d10991ffeb7931abe19 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 26915-26926 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/3b0ae9cf25b24d10991ffeb7931abe19 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5102691216 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-0042-4042 |
| authorships[0].author.display_name | Xuan Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I92403157 |
| authorships[0].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5101864198 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2750-6944 |
| authorships[1].author.display_name | Xiaopeng Yang |
| authorships[1].affiliations[0].raw_affiliation_string | China Petroleum Technology and Development Corporation, Beijing, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaopeng Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Petroleum Technology and Development Corporation, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5111271974 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaotong Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I92403157 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I92403157 |
| authorships[2].institutions[0].ror | https://ror.org/02egmk993 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I92403157 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | University of Science and Technology Beijing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaotong Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5100350382 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9406-8273 |
| authorships[3].author.display_name | Yang Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I200296433 |
| authorships[3].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yang Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, State Key Laboratory of Common Mechanism Research for Major Diseases, Peking Union Medical College, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3435433 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ROI-Based Multimodal Neuroimaging Feature Fusion Method and Its Graph Neural Network Diagnostic Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W3013693939, https://openalex.org/W2159052453, https://openalex.org/W2566616303, https://openalex.org/W3131327266, https://openalex.org/W2734887215, https://openalex.org/W4297051394, https://openalex.org/W2752972570, https://openalex.org/W2145836866, https://openalex.org/W2803255133, https://openalex.org/W2891286602 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3435433 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3435433 |
| primary_location.id | doi:10.1109/access.2024.3435433 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3435433 |
| publication_date | 2024-07-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2791012641, https://openalex.org/W6754795430, https://openalex.org/W3113100858, https://openalex.org/W2907492528, https://openalex.org/W3152893301, https://openalex.org/W2957048678, https://openalex.org/W6879715561, https://openalex.org/W4385621509, https://openalex.org/W4396986359, https://openalex.org/W3023598957, https://openalex.org/W2025009638, https://openalex.org/W2117340355, https://openalex.org/W3170129735, https://openalex.org/W2027666102, https://openalex.org/W4255788608, https://openalex.org/W3091541864, https://openalex.org/W3211091912, https://openalex.org/W1965555277, https://openalex.org/W2806489700, https://openalex.org/W2165840723, https://openalex.org/W2113778882, https://openalex.org/W2147498939, https://openalex.org/W2768048538 |
| referenced_works_count | 23 |
| abstract_inverted_index.A | 102 |
| abstract_inverted_index.a | 86 |
| abstract_inverted_index.To | 44 |
| abstract_inverted_index.an | 25, 71, 81 |
| abstract_inverted_index.as | 14 |
| abstract_inverted_index.at | 115 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.in | 136 |
| abstract_inverted_index.is | 97 |
| abstract_inverted_index.of | 28, 36, 131 |
| abstract_inverted_index.on | 58, 91 |
| abstract_inverted_index.to | 22, 73 |
| abstract_inverted_index.PET | 66 |
| abstract_inverted_index.The | 68 |
| abstract_inverted_index.and | 7, 17, 24, 38, 65, 75, 94 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.can | 32 |
| abstract_inverted_index.for | 41, 99, 119 |
| abstract_inverted_index.the | 34, 51, 109, 112, 116 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.data | 2, 96, 139 |
| abstract_inverted_index.sMRI | 64 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 125 |
| abstract_inverted_index.then | 107 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.with | 111 |
| abstract_inverted_index.Graph | 53 |
| abstract_inverted_index.Model | 56 |
| abstract_inverted_index.based | 57, 90 |
| abstract_inverted_index.brain | 29, 42 |
| abstract_inverted_index.data. | 67 |
| abstract_inverted_index.final | 120 |
| abstract_inverted_index.fused | 114 |
| abstract_inverted_index.graph | 100, 104 |
| abstract_inverted_index.layer | 118 |
| abstract_inverted_index.model | 69 |
| abstract_inverted_index.often | 3 |
| abstract_inverted_index.other | 134 |
| abstract_inverted_index.paper | 49 |
| abstract_inverted_index.these | 46 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.During | 83 |
| abstract_inverted_index.Fusion | 60 |
| abstract_inverted_index.Neural | 54 |
| abstract_inverted_index.biases | 23 |
| abstract_inverted_index.hinder | 33 |
| abstract_inverted_index.issues | 12 |
| abstract_inverted_index.matrix | 89 |
| abstract_inverted_index.neural | 105 |
| abstract_inverted_index.ratio, | 16 |
| abstract_inverted_index.sample | 78 |
| abstract_inverted_index.shared | 87 |
| abstract_inverted_index.98.17%, | 132 |
| abstract_inverted_index.Feature | 59 |
| abstract_inverted_index.Network | 55 |
| abstract_inverted_index.address | 45 |
| abstract_inverted_index.employs | 70 |
| abstract_inverted_index.extract | 74 |
| abstract_inverted_index.feature | 84, 92 |
| abstract_inverted_index.fusion, | 85 |
| abstract_inverted_index.leading | 21 |
| abstract_inverted_index.limited | 5 |
| abstract_inverted_index.methods | 135 |
| abstract_inverted_index.network | 106 |
| abstract_inverted_index.provide | 4 |
| abstract_inverted_index.results | 113, 123 |
| abstract_inverted_index.MMP-DGNN | 126 |
| abstract_inverted_index.achieves | 127 |
| abstract_inverted_index.decision | 117 |
| abstract_inverted_index.describe | 77 |
| abstract_inverted_index.features | 79 |
| abstract_inverted_index.presents | 50 |
| abstract_inverted_index.superior | 128 |
| abstract_inverted_index.adjacency | 88 |
| abstract_inverted_index.algorithm | 72 |
| abstract_inverted_index.features, | 110 |
| abstract_inverted_index.leverages | 63 |
| abstract_inverted_index.technical | 11 |
| abstract_inverted_index.Multimodal | 52 |
| abstract_inverted_index.accurately | 76 |
| abstract_inverted_index.classifies | 108 |
| abstract_inverted_index.diagnostic | 37 |
| abstract_inverted_index.disorders. | 43 |
| abstract_inverted_index.dual-layer | 103 |
| abstract_inverted_index.incomplete | 26 |
| abstract_inverted_index.multimodal | 137 |
| abstract_inverted_index.phenotypic | 95 |
| abstract_inverted_index.resolution | 18 |
| abstract_inverted_index.similarity | 93 |
| abstract_inverted_index.strategies | 40 |
| abstract_inverted_index.(MMP-DGNN), | 61 |
| abstract_inverted_index.challenges, | 47 |
| abstract_inverted_index.constrained | 9 |
| abstract_inverted_index.constructed | 98 |
| abstract_inverted_index.development | 35 |
| abstract_inverted_index.information | 6 |
| abstract_inverted_index.performance | 130 |
| abstract_inverted_index.potentially | 20 |
| abstract_inverted_index.therapeutic | 39 |
| abstract_inverted_index.Experimental | 122 |
| abstract_inverted_index.autoencoder. | 82 |
| abstract_inverted_index.limitations, | 19 |
| abstract_inverted_index.neuroimaging | 1, 138 |
| abstract_inverted_index.complexities. | 30 |
| abstract_inverted_index.outperforming | 133 |
| abstract_inverted_index.understanding | 27 |
| abstract_inverted_index.classification | 129 |
| abstract_inverted_index.Single-modality | 0 |
| abstract_inverted_index.classification. | 121, 140 |
| abstract_inverted_index.representation. | 101 |
| abstract_inverted_index.signal-to-noise | 15 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.7026318 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |