RoTO: Robust Topology Obfuscation Against Tomography Inference Attacks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.12852
Tomography inference attacks aim to reconstruct network topology by analyzing end-to-end probe delays. Existing defenses mitigate these attacks by manipulating probe delays to mislead inference, but rely on two strong assumptions: (i) probe packets can be perfectly detected and altered, and (ii) attackers use known, fixed inference algorithms. These assumptions often break in practice, leading to degraded defense performance under detection errors or adaptive adversaries. We present RoTO, a robust topology obfuscation scheme that eliminates both assumptions by modeling uncertainty in attacker-observed delays through a distributional formulation. RoTO casts the defense objective as a min-max optimization problem that maximizes expected topological distortion across this uncertainty set, without relying on perfect probe control or specific attacker models. To approximate attacker behavior, RoTO leverages graph neural networks for inference simulation and adversarial training. We also derive an upper bound on attacker success probability, and demonstrate that our approach enhances topology obfuscation performance through the optimization of this upper bound. Experimental results show that RoTO outperforms existing defense methods, achieving average improvements of 34% in structural similarity and 42.6% in link distance while maintaining strong robustness and concealment capabilities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.12852
- https://arxiv.org/pdf/2508.12852
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414490807
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414490807Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.12852Digital Object Identifier
- Title
-
RoTO: Robust Topology Obfuscation Against Tomography Inference AttacksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-18Full publication date if available
- Authors
-
Changyan Du, Heng Xu, Zhi-wei Yu, Minghao Yin, Zili Meng, Jialong LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.12852Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.12852Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.12852Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414490807 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.12852 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.12852 |
| ids.openalex | https://openalex.org/W4414490807 |
| fwci | |
| type | preprint |
| title | RoTO: Robust Topology Obfuscation Against Tomography Inference Attacks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10522 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Medical Imaging Techniques and Applications |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9847999811172485 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.12852 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.12852 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.12852 |
| locations[1].id | doi:10.48550/arxiv.2508.12852 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.12852 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5023481746 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-5313-7750 |
| authorships[0].author.display_name | Changyan Du |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Du, Chengze |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100613266 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1307-4896 |
| authorships[1].author.display_name | Heng Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Heng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100511815 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhi-wei Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Zhiwei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023555343 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6226-2394 |
| authorships[3].author.display_name | Minghao Yin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Ying |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5066915269 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2009-7180 |
| authorships[4].author.display_name | Zili Meng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meng, Zili |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5062676356 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2969-5761 |
| authorships[5].author.display_name | Jialong Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Li, Jialong |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.12852 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RoTO: Robust Topology Obfuscation Against Tomography Inference Attacks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10522 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Medical Imaging Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.12852 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.12852 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.12852 |
| primary_location.id | pmh:oai:arXiv.org:2508.12852 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.12852 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.12852 |
| publication_date | 2025-08-18 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 68, 84, 93 |
| abstract_inverted_index.To | 116 |
| abstract_inverted_index.We | 65, 131 |
| abstract_inverted_index.an | 134 |
| abstract_inverted_index.as | 92 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 8, 18, 77 |
| abstract_inverted_index.in | 52, 80, 171, 176 |
| abstract_inverted_index.of | 153, 169 |
| abstract_inverted_index.on | 27, 108, 137 |
| abstract_inverted_index.or | 62, 112 |
| abstract_inverted_index.to | 4, 22, 55 |
| abstract_inverted_index.(i) | 31 |
| abstract_inverted_index.34% | 170 |
| abstract_inverted_index.aim | 3 |
| abstract_inverted_index.and | 38, 40, 128, 141, 174, 183 |
| abstract_inverted_index.but | 25 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.for | 125 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 89, 151 |
| abstract_inverted_index.two | 28 |
| abstract_inverted_index.use | 43 |
| abstract_inverted_index.(ii) | 41 |
| abstract_inverted_index.RoTO | 87, 120, 161 |
| abstract_inverted_index.also | 132 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.link | 177 |
| abstract_inverted_index.rely | 26 |
| abstract_inverted_index.set, | 105 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.that | 73, 97, 143, 160 |
| abstract_inverted_index.this | 103, 154 |
| abstract_inverted_index.42.6% | 175 |
| abstract_inverted_index.RoTO, | 67 |
| abstract_inverted_index.These | 48 |
| abstract_inverted_index.bound | 136 |
| abstract_inverted_index.break | 51 |
| abstract_inverted_index.casts | 88 |
| abstract_inverted_index.fixed | 45 |
| abstract_inverted_index.graph | 122 |
| abstract_inverted_index.often | 50 |
| abstract_inverted_index.probe | 11, 20, 32, 110 |
| abstract_inverted_index.these | 16 |
| abstract_inverted_index.under | 59 |
| abstract_inverted_index.upper | 135, 155 |
| abstract_inverted_index.while | 179 |
| abstract_inverted_index.across | 102 |
| abstract_inverted_index.bound. | 156 |
| abstract_inverted_index.delays | 21, 82 |
| abstract_inverted_index.derive | 133 |
| abstract_inverted_index.errors | 61 |
| abstract_inverted_index.known, | 44 |
| abstract_inverted_index.neural | 123 |
| abstract_inverted_index.robust | 69 |
| abstract_inverted_index.scheme | 72 |
| abstract_inverted_index.strong | 29, 181 |
| abstract_inverted_index.attacks | 2, 17 |
| abstract_inverted_index.average | 167 |
| abstract_inverted_index.control | 111 |
| abstract_inverted_index.defense | 57, 90, 164 |
| abstract_inverted_index.delays. | 12 |
| abstract_inverted_index.leading | 54 |
| abstract_inverted_index.min-max | 94 |
| abstract_inverted_index.mislead | 23 |
| abstract_inverted_index.models. | 115 |
| abstract_inverted_index.network | 6 |
| abstract_inverted_index.packets | 33 |
| abstract_inverted_index.perfect | 109 |
| abstract_inverted_index.present | 66 |
| abstract_inverted_index.problem | 96 |
| abstract_inverted_index.relying | 107 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.success | 139 |
| abstract_inverted_index.through | 83, 150 |
| abstract_inverted_index.without | 106 |
| abstract_inverted_index.Existing | 13 |
| abstract_inverted_index.adaptive | 63 |
| abstract_inverted_index.altered, | 39 |
| abstract_inverted_index.approach | 145 |
| abstract_inverted_index.attacker | 114, 118, 138 |
| abstract_inverted_index.defenses | 14 |
| abstract_inverted_index.degraded | 56 |
| abstract_inverted_index.detected | 37 |
| abstract_inverted_index.distance | 178 |
| abstract_inverted_index.enhances | 146 |
| abstract_inverted_index.existing | 163 |
| abstract_inverted_index.expected | 99 |
| abstract_inverted_index.methods, | 165 |
| abstract_inverted_index.mitigate | 15 |
| abstract_inverted_index.modeling | 78 |
| abstract_inverted_index.networks | 124 |
| abstract_inverted_index.specific | 113 |
| abstract_inverted_index.topology | 7, 70, 147 |
| abstract_inverted_index.achieving | 166 |
| abstract_inverted_index.analyzing | 9 |
| abstract_inverted_index.attackers | 42 |
| abstract_inverted_index.behavior, | 119 |
| abstract_inverted_index.detection | 60 |
| abstract_inverted_index.inference | 1, 46, 126 |
| abstract_inverted_index.leverages | 121 |
| abstract_inverted_index.maximizes | 98 |
| abstract_inverted_index.objective | 91 |
| abstract_inverted_index.perfectly | 36 |
| abstract_inverted_index.practice, | 53 |
| abstract_inverted_index.training. | 130 |
| abstract_inverted_index.Tomography | 0 |
| abstract_inverted_index.distortion | 101 |
| abstract_inverted_index.eliminates | 74 |
| abstract_inverted_index.end-to-end | 10 |
| abstract_inverted_index.inference, | 24 |
| abstract_inverted_index.robustness | 182 |
| abstract_inverted_index.similarity | 173 |
| abstract_inverted_index.simulation | 127 |
| abstract_inverted_index.structural | 172 |
| abstract_inverted_index.adversarial | 129 |
| abstract_inverted_index.algorithms. | 47 |
| abstract_inverted_index.approximate | 117 |
| abstract_inverted_index.assumptions | 49, 76 |
| abstract_inverted_index.concealment | 184 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.maintaining | 180 |
| abstract_inverted_index.obfuscation | 71, 148 |
| abstract_inverted_index.outperforms | 162 |
| abstract_inverted_index.performance | 58, 149 |
| abstract_inverted_index.reconstruct | 5 |
| abstract_inverted_index.topological | 100 |
| abstract_inverted_index.uncertainty | 79, 104 |
| abstract_inverted_index.Experimental | 157 |
| abstract_inverted_index.adversaries. | 64 |
| abstract_inverted_index.assumptions: | 30 |
| abstract_inverted_index.formulation. | 86 |
| abstract_inverted_index.improvements | 168 |
| abstract_inverted_index.manipulating | 19 |
| abstract_inverted_index.optimization | 95, 152 |
| abstract_inverted_index.probability, | 140 |
| abstract_inverted_index.capabilities. | 185 |
| abstract_inverted_index.distributional | 85 |
| abstract_inverted_index.attacker-observed | 81 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |