RSMamba: Remote Sensing Image Classification with State Space Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.19654
Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code will be available at \url{https://github.com/KyanChen/RSMamba}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.19654
- https://arxiv.org/pdf/2403.19654
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393336297
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393336297Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.19654Digital Object Identifier
- Title
-
RSMamba: Remote Sensing Image Classification with State Space ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-28Full publication date if available
- Authors
-
Keyan Chen, Bowen Chen, Chenyang Liu, Wenyuan Li, Zhengxia Zou, Zhenwei ShiList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.19654Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.19654Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.19654Direct OA link when available
- Concepts
-
Space (punctuation), Remote sensing, Image (mathematics), State (computer science), Computer science, Computer vision, Artificial intelligence, Geography, Algorithm, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393336297 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.19654 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.19654 |
| ids.openalex | https://openalex.org/W4393336297 |
| fwci | |
| type | preprint |
| title | RSMamba: Remote Sensing Image Classification with State Space Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9469000101089478 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778572836 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5863722562789917 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[0].display_name | Space (punctuation) |
| concepts[1].id | https://openalex.org/C62649853 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5433831810951233 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[1].display_name | Remote sensing |
| concepts[2].id | https://openalex.org/C115961682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5414474606513977 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[2].display_name | Image (mathematics) |
| concepts[3].id | https://openalex.org/C48103436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5304206013679504 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[3].display_name | State (computer science) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4884614050388336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42023080587387085 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4015663266181946 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3027617931365967 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.13572704792022705 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/space |
| keywords[0].score | 0.5863722562789917 |
| keywords[0].display_name | Space (punctuation) |
| keywords[1].id | https://openalex.org/keywords/remote-sensing |
| keywords[1].score | 0.5433831810951233 |
| keywords[1].display_name | Remote sensing |
| keywords[2].id | https://openalex.org/keywords/image |
| keywords[2].score | 0.5414474606513977 |
| keywords[2].display_name | Image (mathematics) |
| keywords[3].id | https://openalex.org/keywords/state |
| keywords[3].score | 0.5304206013679504 |
| keywords[3].display_name | State (computer science) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4884614050388336 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.42023080587387085 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4015663266181946 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.3027617931365967 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.13572704792022705 |
| keywords[8].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.19654 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.19654 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.19654 |
| locations[1].id | doi:10.48550/arxiv.2403.19654 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.19654 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101518544 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0483-1306 |
| authorships[0].author.display_name | Keyan Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Keyan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064996959 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9975-7983 |
| authorships[1].author.display_name | Bowen Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Bowen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5059677848 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3034-6646 |
| authorships[2].author.display_name | Chenyang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Chenyang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085165889 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5113-7280 |
| authorships[3].author.display_name | Wenyuan Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Wenyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088611151 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1774-552X |
| authorships[4].author.display_name | Zhengxia Zou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zou, Zhengxia |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5112124899 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Zhenwei Shi |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shi, Zhenwei |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.19654 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RSMamba: Remote Sensing Image Classification with State Space Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9469000101089478 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2059707233, https://openalex.org/W2095126257, https://openalex.org/W2085738998, https://openalex.org/W2031511989, https://openalex.org/W1606936601 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.19654 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.19654 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.19654 |
| primary_location.id | pmh:oai:arXiv.org:2403.19654 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.19654 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.19654 |
| publication_date | 2024-03-28 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 41, 80, 113, 145 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.It | 107 |
| abstract_inverted_index.To | 121 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.as | 104, 189 |
| abstract_inverted_index.at | 202 |
| abstract_inverted_index.be | 200 |
| abstract_inverted_index.in | 15 |
| abstract_inverted_index.is | 89, 136 |
| abstract_inverted_index.of | 7, 23, 50, 57, 111, 125, 165, 192 |
| abstract_inverted_index.on | 91 |
| abstract_inverted_index.to | 139, 150, 154, 187 |
| abstract_inverted_index.we | 77, 143 |
| abstract_inverted_index.The | 20, 60, 197 |
| abstract_inverted_index.and | 28, 48, 54, 97, 117, 135 |
| abstract_inverted_index.can | 65, 130 |
| abstract_inverted_index.for | 62, 71, 83 |
| abstract_inverted_index.not | 137 |
| abstract_inverted_index.the | 5, 46, 55, 92, 105, 109, 123, 126, 161, 166, 190 |
| abstract_inverted_index.yet | 169 |
| abstract_inverted_index.This | 180 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.code | 198 |
| abstract_inverted_index.cues | 70 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.more | 67 |
| abstract_inverted_index.only | 131 |
| abstract_inverted_index.that | 182 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.will | 199 |
| abstract_inverted_index.(SSM) | 96 |
| abstract_inverted_index.Model | 95 |
| abstract_inverted_index.Space | 94 |
| abstract_inverted_index.State | 93 |
| abstract_inverted_index.based | 90 |
| abstract_inverted_index.data, | 142 |
| abstract_inverted_index.data. | 157 |
| abstract_inverted_index.field | 116 |
| abstract_inverted_index.forms | 4 |
| abstract_inverted_index.given | 45 |
| abstract_inverted_index.holds | 184 |
| abstract_inverted_index.image | 2, 18, 86, 141, 177 |
| abstract_inverted_index.known | 103 |
| abstract_inverted_index.model | 132, 155 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.scene | 38, 72 |
| abstract_inverted_index.which | 129 |
| abstract_inverted_index.(CNNs) | 27 |
| abstract_inverted_index.Mamba, | 128, 168 |
| abstract_inverted_index.Mamba. | 106 |
| abstract_inverted_index.Neural | 25 |
| abstract_inverted_index.Remote | 0 |
| abstract_inverted_index.across | 173 |
| abstract_inverted_index.causal | 133 |
| abstract_inverted_index.design | 102 |
| abstract_inverted_index.future | 193 |
| abstract_inverted_index.global | 114 |
| abstract_inverted_index.linear | 118 |
| abstract_inverted_index.paper, | 76 |
| abstract_inverted_index.recent | 21 |
| abstract_inverted_index.remote | 16, 36, 51, 84, 175 |
| abstract_inverted_index.tasks, | 10 |
| abstract_inverted_index.visual | 194 |
| abstract_inverted_index.Mamba's | 152 |
| abstract_inverted_index.RSMamba | 88, 159, 183 |
| abstract_inverted_index.augment | 151 |
| abstract_inverted_index.crucial | 13 |
| abstract_inverted_index.dynamic | 146 |
| abstract_inverted_index.models. | 196 |
| abstract_inverted_index.precise | 68 |
| abstract_inverted_index.propose | 144 |
| abstract_inverted_index.provide | 66 |
| abstract_inverted_index.remains | 40 |
| abstract_inverted_index.sensing | 1, 17, 37, 52, 85, 176 |
| abstract_inverted_index.serving | 11 |
| abstract_inverted_index.vanilla | 127, 167 |
| abstract_inverted_index.various | 8 |
| abstract_inverted_index.Networks | 26 |
| abstract_inverted_index.Notably, | 158 |
| abstract_inverted_index.RSMamba, | 79 |
| abstract_inverted_index.backbone | 191 |
| abstract_inverted_index.capacity | 61, 153 |
| abstract_inverted_index.enhanced | 32 |
| abstract_inverted_index.exhibits | 170 |
| abstract_inverted_index.function | 14, 188 |
| abstract_inverted_index.inherent | 162 |
| abstract_inverted_index.markedly | 31 |
| abstract_inverted_index.modeling | 119, 163 |
| abstract_inverted_index.multiple | 174 |
| abstract_inverted_index.overcome | 122 |
| abstract_inverted_index.semantic | 69 |
| abstract_inverted_index.superior | 171 |
| abstract_inverted_index.accuracy. | 34 |
| abstract_inverted_index.adaptable | 138 |
| abstract_inverted_index.available | 201 |
| abstract_inverted_index.datasets. | 179 |
| abstract_inverted_index.diversity | 49 |
| abstract_inverted_index.indicates | 181 |
| abstract_inverted_index.introduce | 78 |
| abstract_inverted_index.maintains | 160 |
| abstract_inverted_index.mechanism | 149, 164 |
| abstract_inverted_index.potential | 186 |
| abstract_inverted_index.receptive | 115 |
| abstract_inverted_index.scenarios | 53 |
| abstract_inverted_index.sequences | 134 |
| abstract_inverted_index.activation | 148 |
| abstract_inverted_index.advantages | 110 |
| abstract_inverted_index.challenge, | 43 |
| abstract_inverted_index.complexity | 47 |
| abstract_inverted_index.efficient, | 100 |
| abstract_inverted_index.especially | 44 |
| abstract_inverted_index.foundation | 6, 195 |
| abstract_inverted_index.integrates | 108 |
| abstract_inverted_index.limitation | 124 |
| abstract_inverted_index.multi-path | 147 |
| abstract_inverted_index.non-causal | 156 |
| abstract_inverted_index.complexity. | 120 |
| abstract_inverted_index.performance | 172 |
| abstract_inverted_index.significant | 42, 185 |
| abstract_inverted_index.variability | 56 |
| abstract_inverted_index.whole-image | 63 |
| abstract_inverted_index.Nonetheless, | 35 |
| abstract_inverted_index.Transformers | 29 |
| abstract_inverted_index.advancements | 22 |
| abstract_inverted_index.architecture | 82 |
| abstract_inverted_index.incorporates | 98 |
| abstract_inverted_index.resolutions. | 59 |
| abstract_inverted_index.Convolutional | 24 |
| abstract_inverted_index.understanding | 9, 64 |
| abstract_inverted_index.classification | 3, 33, 39, 178 |
| abstract_inverted_index.hardware-aware | 101 |
| abstract_inverted_index.spatiotemporal | 58 |
| abstract_inverted_index.classification. | 87 |
| abstract_inverted_index.discrimination. | 73 |
| abstract_inverted_index.interpretation. | 19 |
| abstract_inverted_index.two-dimensional | 140 |
| abstract_inverted_index.\url{https://github.com/KyanChen/RSMamba}. | 203 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |