RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.egyr.2023.05.121
With the wide application of lithium ion batteries, the importance of life prediction is also highlighted. The prediction of the remaining life of lithium ion battery is an important part of its health management, and accurate prediction can improve the safety of equipment. In this paper, a method for predicting the residual life of lithium ion batteries based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), One-dimensional Convolutional Neural Network (1D CNN) and Bi-directional Long Short-Term Memory (BiLSTM) neural network is proposed. The capacity is selected as the health factor, and then CEEMDAN is used to decompose the complex and unstable data to obtain stable components. One-dimensional Convolutional Neural Network (1D CNN) is used to deeply mine the capacity data of lithium-ion batteries. Finally, BiLSTM neural network modeling is used to predict the remaining useful life (RUL) of lithium-ion batteries. The NASA data set is used for testing and prediction comparison with BiLSTM model and CNN-BiLSTM model. The prediction results show that CEEMDAN-CNN BiLSTM model has higher prediction accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.egyr.2023.05.121
- OA Status
- gold
- Cited By
- 69
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381191528
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381191528Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.egyr.2023.05.121Digital Object Identifier
- Title
-
RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-19Full publication date if available
- Authors
-
Xifeng Guo, Kaize Wang, Yao Shu, Guojiang Fu, Yi NingList of authors in order
- Landing page
-
https://doi.org/10.1016/j.egyr.2023.05.121Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.egyr.2023.05.121Direct OA link when available
- Concepts
-
Convolutional neural network, Battery (electricity), Artificial neural network, Noise (video), Computer science, Hilbert–Huang transform, Lithium (medication), Artificial intelligence, Lithium-ion battery, Battery capacity, Pattern recognition (psychology), White noise, Telecommunications, Physics, Power (physics), Medicine, Endocrinology, Image (mathematics), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
69Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 36, 2024: 27, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381191528 |
|---|---|
| doi | https://doi.org/10.1016/j.egyr.2023.05.121 |
| ids.doi | https://doi.org/10.1016/j.egyr.2023.05.121 |
| ids.openalex | https://openalex.org/W4381191528 |
| fwci | 11.2857227 |
| type | article |
| title | RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model |
| awards[0].id | https://openalex.org/G2110927219 |
| awards[0].funder_id | https://openalex.org/F4320324679 |
| awards[0].display_name | |
| awards[0].funder_award_id | 21-108-9-02 |
| awards[0].funder_display_name | Shenyang Science and Technology Bureau |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 1306 |
| biblio.first_page | 1299 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904999732971191 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| funders[0].id | https://openalex.org/F4320324679 |
| funders[0].ror | https://ror.org/007medz62 |
| funders[0].display_name | Shenyang Science and Technology Bureau |
| is_xpac | False |
| apc_list.value | 2090 |
| apc_list.currency | USD |
| apc_list.value_usd | 2090 |
| apc_paid.value | 2090 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2090 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6534034013748169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C555008776 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5884236097335815 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[1].display_name | Battery (electricity) |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5863288044929504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5560358762741089 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5466327667236328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C25570617 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5270105600357056 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1006462 |
| concepts[5].display_name | Hilbert–Huang transform |
| concepts[6].id | https://openalex.org/C2778541603 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5061790347099304 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q152763 |
| concepts[6].display_name | Lithium (medication) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4798426330089569 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2779197387 |
| concepts[8].level | 4 |
| concepts[8].score | 0.42968854308128357 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2822895 |
| concepts[8].display_name | Lithium-ion battery |
| concepts[9].id | https://openalex.org/C2989104859 |
| concepts[9].level | 4 |
| concepts[9].score | 0.42814725637435913 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[9].display_name | Battery capacity |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3345497250556946 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C112633086 |
| concepts[11].level | 2 |
| concepts[11].score | 0.1359141767024994 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q381287 |
| concepts[11].display_name | White noise |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.06344428658485413 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C163258240 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[14].display_name | Power (physics) |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C134018914 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[16].display_name | Endocrinology |
| concepts[17].id | https://openalex.org/C115961682 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[17].display_name | Image (mathematics) |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6534034013748169 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/battery |
| keywords[1].score | 0.5884236097335815 |
| keywords[1].display_name | Battery (electricity) |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5863288044929504 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.5560358762741089 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5466327667236328 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/hilbert–huang-transform |
| keywords[5].score | 0.5270105600357056 |
| keywords[5].display_name | Hilbert–Huang transform |
| keywords[6].id | https://openalex.org/keywords/lithium |
| keywords[6].score | 0.5061790347099304 |
| keywords[6].display_name | Lithium (medication) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4798426330089569 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/lithium-ion-battery |
| keywords[8].score | 0.42968854308128357 |
| keywords[8].display_name | Lithium-ion battery |
| keywords[9].id | https://openalex.org/keywords/battery-capacity |
| keywords[9].score | 0.42814725637435913 |
| keywords[9].display_name | Battery capacity |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3345497250556946 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/white-noise |
| keywords[11].score | 0.1359141767024994 |
| keywords[11].display_name | White noise |
| keywords[12].id | https://openalex.org/keywords/telecommunications |
| keywords[12].score | 0.06344428658485413 |
| keywords[12].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1016/j.egyr.2023.05.121 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898434319 |
| locations[0].source.issn | 2352-4847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-4847 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energy Reports |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energy Reports |
| locations[0].landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.121 |
| locations[1].id | pmh:oai:doaj.org/article:057bdac627b043608d7722f57cf48c82 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energy Reports, Vol 9, Iss , Pp 1299-1306 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/057bdac627b043608d7722f57cf48c82 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101816847 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3432-126X |
| authorships[0].author.display_name | Xifeng Guo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83714178 |
| authorships[0].affiliations[0].raw_affiliation_string | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[0].institutions[0].id | https://openalex.org/I83714178 |
| authorships[0].institutions[0].ror | https://ror.org/01zr73v18 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83714178 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shenyang Jianzhu University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xifeng Guo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[1].author.id | https://openalex.org/A5051104664 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Kaize Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I83714178 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[1].institutions[0].id | https://openalex.org/I83714178 |
| authorships[1].institutions[0].ror | https://ror.org/01zr73v18 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I83714178 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenyang Jianzhu University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaize Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[2].author.id | https://openalex.org/A5000956644 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8847-0549 |
| authorships[2].author.display_name | Yao Shu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I83714178 |
| authorships[2].affiliations[0].raw_affiliation_string | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[2].institutions[0].id | https://openalex.org/I83714178 |
| authorships[2].institutions[0].ror | https://ror.org/01zr73v18 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I83714178 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shenyang Jianzhu University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shu Yao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[3].author.id | https://openalex.org/A5077204019 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Guojiang Fu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83714178 |
| authorships[3].affiliations[0].raw_affiliation_string | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[3].institutions[0].id | https://openalex.org/I83714178 |
| authorships[3].institutions[0].ror | https://ror.org/01zr73v18 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83714178 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenyang Jianzhu University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guojiang Fu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[4].author.id | https://openalex.org/A5072489431 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9851-0516 |
| authorships[4].author.display_name | Yi Ning |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I83714178 |
| authorships[4].affiliations[0].raw_affiliation_string | Shenyang Jianzhu University, Shenyang, 110168, China |
| authorships[4].institutions[0].id | https://openalex.org/I83714178 |
| authorships[4].institutions[0].ror | https://ror.org/01zr73v18 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I83714178 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shenyang Jianzhu University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yi Ning |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shenyang Jianzhu University, Shenyang, 110168, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.egyr.2023.05.121 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W4308964873, https://openalex.org/W2768611900, https://openalex.org/W2995074223, https://openalex.org/W2357719166, https://openalex.org/W2729780499, https://openalex.org/W2384016584, https://openalex.org/W2543699259, https://openalex.org/W1983017669, https://openalex.org/W4224246090, https://openalex.org/W3085364154 |
| cited_by_count | 69 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 36 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 27 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.egyr.2023.05.121 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898434319 |
| best_oa_location.source.issn | 2352-4847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-4847 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energy Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energy Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.121 |
| primary_location.id | doi:10.1016/j.egyr.2023.05.121 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898434319 |
| primary_location.source.issn | 2352-4847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-4847 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energy Reports |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energy Reports |
| primary_location.landing_page_url | https://doi.org/10.1016/j.egyr.2023.05.121 |
| publication_date | 2023-06-19 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3086631322, https://openalex.org/W2064675550, https://openalex.org/W6799315883, https://openalex.org/W1921373351, https://openalex.org/W2896616144, https://openalex.org/W3045614568, https://openalex.org/W3184345533 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 46 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.an | 27 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.is | 13, 26, 82, 86, 95, 114, 130, 146 |
| abstract_inverted_index.of | 4, 10, 18, 22, 30, 41, 53, 122, 139 |
| abstract_inverted_index.on | 58 |
| abstract_inverted_index.to | 97, 104, 116, 132 |
| abstract_inverted_index.(1D | 72, 112 |
| abstract_inverted_index.The | 16, 84, 142, 159 |
| abstract_inverted_index.and | 34, 74, 92, 101, 150, 156 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.for | 48, 148 |
| abstract_inverted_index.has | 167 |
| abstract_inverted_index.ion | 6, 24, 55 |
| abstract_inverted_index.its | 31 |
| abstract_inverted_index.set | 145 |
| abstract_inverted_index.the | 1, 8, 19, 39, 50, 89, 99, 119, 134 |
| abstract_inverted_index.CNN) | 73, 113 |
| abstract_inverted_index.Long | 76 |
| abstract_inverted_index.Mode | 62 |
| abstract_inverted_index.NASA | 143 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 14 |
| abstract_inverted_index.data | 103, 121, 144 |
| abstract_inverted_index.life | 11, 21, 52, 137 |
| abstract_inverted_index.mine | 118 |
| abstract_inverted_index.part | 29 |
| abstract_inverted_index.show | 162 |
| abstract_inverted_index.that | 163 |
| abstract_inverted_index.then | 93 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.used | 96, 115, 131, 147 |
| abstract_inverted_index.wide | 2 |
| abstract_inverted_index.with | 64, 153 |
| abstract_inverted_index.(RUL) | 138 |
| abstract_inverted_index.Noise | 66 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.model | 155, 166 |
| abstract_inverted_index.BiLSTM | 126, 154, 165 |
| abstract_inverted_index.Memory | 78 |
| abstract_inverted_index.Neural | 70, 110 |
| abstract_inverted_index.deeply | 117 |
| abstract_inverted_index.health | 32, 90 |
| abstract_inverted_index.higher | 168 |
| abstract_inverted_index.method | 47 |
| abstract_inverted_index.model. | 158 |
| abstract_inverted_index.neural | 80, 127 |
| abstract_inverted_index.obtain | 105 |
| abstract_inverted_index.paper, | 45 |
| abstract_inverted_index.safety | 40 |
| abstract_inverted_index.stable | 106 |
| abstract_inverted_index.useful | 136 |
| abstract_inverted_index.CEEMDAN | 94 |
| abstract_inverted_index.Network | 71, 111 |
| abstract_inverted_index.battery | 25 |
| abstract_inverted_index.complex | 100 |
| abstract_inverted_index.factor, | 91 |
| abstract_inverted_index.improve | 38 |
| abstract_inverted_index.lithium | 5, 23, 54 |
| abstract_inverted_index.network | 81, 128 |
| abstract_inverted_index.predict | 133 |
| abstract_inverted_index.results | 161 |
| abstract_inverted_index.testing | 149 |
| abstract_inverted_index.(BiLSTM) | 79 |
| abstract_inverted_index.Adaptive | 65 |
| abstract_inverted_index.Complete | 59 |
| abstract_inverted_index.Ensemble | 60 |
| abstract_inverted_index.Finally, | 125 |
| abstract_inverted_index.accurate | 35 |
| abstract_inverted_index.capacity | 85, 120 |
| abstract_inverted_index.modeling | 129 |
| abstract_inverted_index.residual | 51 |
| abstract_inverted_index.selected | 87 |
| abstract_inverted_index.unstable | 102 |
| abstract_inverted_index.Empirical | 61 |
| abstract_inverted_index.accuracy. | 170 |
| abstract_inverted_index.batteries | 56 |
| abstract_inverted_index.decompose | 98 |
| abstract_inverted_index.important | 28 |
| abstract_inverted_index.proposed. | 83 |
| abstract_inverted_index.remaining | 20, 135 |
| abstract_inverted_index.(CEEMDAN), | 67 |
| abstract_inverted_index.CNN-BiLSTM | 157 |
| abstract_inverted_index.Short-Term | 77 |
| abstract_inverted_index.batteries, | 7 |
| abstract_inverted_index.batteries. | 124, 141 |
| abstract_inverted_index.comparison | 152 |
| abstract_inverted_index.equipment. | 42 |
| abstract_inverted_index.importance | 9 |
| abstract_inverted_index.predicting | 49 |
| abstract_inverted_index.prediction | 12, 17, 36, 151, 160, 169 |
| abstract_inverted_index.CEEMDAN-CNN | 164 |
| abstract_inverted_index.application | 3 |
| abstract_inverted_index.components. | 107 |
| abstract_inverted_index.lithium-ion | 123, 140 |
| abstract_inverted_index.management, | 33 |
| abstract_inverted_index.highlighted. | 15 |
| abstract_inverted_index.Convolutional | 69, 109 |
| abstract_inverted_index.Decomposition | 63 |
| abstract_inverted_index.Bi-directional | 75 |
| abstract_inverted_index.One-dimensional | 68, 108 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5051104664 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I83714178 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.98651382 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |