Running Markov Chain Monte Carlo on Modern Hardware and Software Article Swipe
Pavel Sountsov
,
Colin Carroll
,
Matthew D. Hoffman
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.04260
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2411.04260
Today, cheap numerical hardware offers huge amounts of parallel computing power, much of which is used for the task of fitting neural networks to data. Adoption of this hardware to accelerate statistical Markov chain Monte Carlo (MCMC) applications has been much slower. In this chapter, we suggest some patterns for speeding up MCMC workloads using the hardware (e.g., GPUs, TPUs) and software (e.g., PyTorch, JAX) that have driven progress in deep learning over the last fifteen years or so. We offer some intuitions for why these new systems are so well suited to MCMC, and show some examples (with code) where we use them to achieve dramatic speedups over a CPU-based workflow. Finally, we discuss some potential pitfalls to watch out for.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2411.04260
- https://arxiv.org/pdf/2411.04260
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404404689
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404404689Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2411.04260Digital Object Identifier
- Title
-
Running Markov Chain Monte Carlo on Modern Hardware and SoftwareWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-06Full publication date if available
- Authors
-
Pavel Sountsov, Colin Carroll, Matthew D. HoffmanList of authors in order
- Landing page
-
https://arxiv.org/abs/2411.04260Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2411.04260Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2411.04260Direct OA link when available
- Concepts
-
Markov chain Monte Carlo, Computer science, Monte Carlo method, Software, Markov chain, Operating system, Mathematics, Statistics, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404404689 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2411.04260 |
| ids.doi | https://doi.org/10.48550/arxiv.2411.04260 |
| ids.openalex | https://openalex.org/W4404404689 |
| fwci | |
| type | preprint |
| title | Running Markov Chain Monte Carlo on Modern Hardware and Software |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11195 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.2540000081062317 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Simulation Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.697135329246521 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6482656598091125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C19499675 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5952122807502747 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[2].display_name | Monte Carlo method |
| concepts[3].id | https://openalex.org/C2777904410 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5575463175773621 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[3].display_name | Software |
| concepts[4].id | https://openalex.org/C98763669 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5360645651817322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[4].display_name | Markov chain |
| concepts[5].id | https://openalex.org/C111919701 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1827675700187683 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[5].display_name | Operating system |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1414242386817932 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.07426449656486511 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0675700306892395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.697135329246521 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6482656598091125 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[2].score | 0.5952122807502747 |
| keywords[2].display_name | Monte Carlo method |
| keywords[3].id | https://openalex.org/keywords/software |
| keywords[3].score | 0.5575463175773621 |
| keywords[3].display_name | Software |
| keywords[4].id | https://openalex.org/keywords/markov-chain |
| keywords[4].score | 0.5360645651817322 |
| keywords[4].display_name | Markov chain |
| keywords[5].id | https://openalex.org/keywords/operating-system |
| keywords[5].score | 0.1827675700187683 |
| keywords[5].display_name | Operating system |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.1414242386817932 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.07426449656486511 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.0675700306892395 |
| keywords[8].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2411.04260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2411.04260 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2411.04260 |
| locations[1].id | doi:10.48550/arxiv.2411.04260 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2411.04260 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008991598 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pavel Sountsov |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sountsov, Pavel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104946405 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Colin Carroll |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Carroll, Colin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109851187 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Matthew D. Hoffman |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hoffman, Matthew D. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2411.04260 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Running Markov Chain Monte Carlo on Modern Hardware and Software |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11195 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.2540000081062317 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Simulation Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2151689585, https://openalex.org/W2380816257, https://openalex.org/W3087071515, https://openalex.org/W4283726152, https://openalex.org/W2390279801, https://openalex.org/W1525770572, https://openalex.org/W4391913857 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2411.04260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2411.04260 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2411.04260 |
| primary_location.id | pmh:oai:arXiv.org:2411.04260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2411.04260 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2411.04260 |
| publication_date | 2024-11-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 109 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.We | 79 |
| abstract_inverted_index.in | 69 |
| abstract_inverted_index.is | 14 |
| abstract_inverted_index.of | 7, 12, 19, 26 |
| abstract_inverted_index.or | 77 |
| abstract_inverted_index.so | 89 |
| abstract_inverted_index.to | 23, 29, 92, 104, 118 |
| abstract_inverted_index.up | 51 |
| abstract_inverted_index.we | 45, 101, 113 |
| abstract_inverted_index.and | 60, 94 |
| abstract_inverted_index.are | 88 |
| abstract_inverted_index.for | 16, 49, 83 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.new | 86 |
| abstract_inverted_index.out | 120 |
| abstract_inverted_index.so. | 78 |
| abstract_inverted_index.the | 17, 55, 73 |
| abstract_inverted_index.use | 102 |
| abstract_inverted_index.why | 84 |
| abstract_inverted_index.JAX) | 64 |
| abstract_inverted_index.MCMC | 52 |
| abstract_inverted_index.been | 39 |
| abstract_inverted_index.deep | 70 |
| abstract_inverted_index.for. | 121 |
| abstract_inverted_index.have | 66 |
| abstract_inverted_index.huge | 5 |
| abstract_inverted_index.last | 74 |
| abstract_inverted_index.much | 11, 40 |
| abstract_inverted_index.over | 72, 108 |
| abstract_inverted_index.show | 95 |
| abstract_inverted_index.some | 47, 81, 96, 115 |
| abstract_inverted_index.task | 18 |
| abstract_inverted_index.that | 65 |
| abstract_inverted_index.them | 103 |
| abstract_inverted_index.this | 27, 43 |
| abstract_inverted_index.used | 15 |
| abstract_inverted_index.well | 90 |
| abstract_inverted_index.(with | 98 |
| abstract_inverted_index.Carlo | 35 |
| abstract_inverted_index.GPUs, | 58 |
| abstract_inverted_index.MCMC, | 93 |
| abstract_inverted_index.Monte | 34 |
| abstract_inverted_index.TPUs) | 59 |
| abstract_inverted_index.chain | 33 |
| abstract_inverted_index.cheap | 1 |
| abstract_inverted_index.code) | 99 |
| abstract_inverted_index.data. | 24 |
| abstract_inverted_index.offer | 80 |
| abstract_inverted_index.these | 85 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.watch | 119 |
| abstract_inverted_index.where | 100 |
| abstract_inverted_index.which | 13 |
| abstract_inverted_index.years | 76 |
| abstract_inverted_index.(MCMC) | 36 |
| abstract_inverted_index.(e.g., | 57, 62 |
| abstract_inverted_index.Markov | 32 |
| abstract_inverted_index.Today, | 0 |
| abstract_inverted_index.driven | 67 |
| abstract_inverted_index.neural | 21 |
| abstract_inverted_index.offers | 4 |
| abstract_inverted_index.power, | 10 |
| abstract_inverted_index.suited | 91 |
| abstract_inverted_index.achieve | 105 |
| abstract_inverted_index.amounts | 6 |
| abstract_inverted_index.discuss | 114 |
| abstract_inverted_index.fifteen | 75 |
| abstract_inverted_index.fitting | 20 |
| abstract_inverted_index.slower. | 41 |
| abstract_inverted_index.suggest | 46 |
| abstract_inverted_index.systems | 87 |
| abstract_inverted_index.Adoption | 25 |
| abstract_inverted_index.Finally, | 112 |
| abstract_inverted_index.PyTorch, | 63 |
| abstract_inverted_index.chapter, | 44 |
| abstract_inverted_index.dramatic | 106 |
| abstract_inverted_index.examples | 97 |
| abstract_inverted_index.hardware | 3, 28, 56 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.networks | 22 |
| abstract_inverted_index.parallel | 8 |
| abstract_inverted_index.patterns | 48 |
| abstract_inverted_index.pitfalls | 117 |
| abstract_inverted_index.progress | 68 |
| abstract_inverted_index.software | 61 |
| abstract_inverted_index.speeding | 50 |
| abstract_inverted_index.speedups | 107 |
| abstract_inverted_index.CPU-based | 110 |
| abstract_inverted_index.computing | 9 |
| abstract_inverted_index.numerical | 2 |
| abstract_inverted_index.potential | 116 |
| abstract_inverted_index.workflow. | 111 |
| abstract_inverted_index.workloads | 53 |
| abstract_inverted_index.accelerate | 30 |
| abstract_inverted_index.intuitions | 82 |
| abstract_inverted_index.statistical | 31 |
| abstract_inverted_index.applications | 37 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |