RWKV-VIO: An Efficient and Low-Drift Visual–Inertial Odometry Using an End-to-End Deep Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25185737
Visual–Inertial Odometry (VIO) is a foundational technology for autonomous navigation and robotics. However, existing deep learning-based methods face key challenges in temporal modeling and computational efficiency. Conventional approaches, such as Long Short-Term Memory (LSTM) networks and Transformers methods, often struggle to handle dependencies across different temporal scales while causing high computational costs. To address these issues, this work introduces Receptance Weighted Key Value (RWKV)-VIO, a novel framework based on the RWKV architecture. The proposed framework is designed with a lightweight structure and linear computational complexity, which effectively reduces the computational burden in temporal modeling. Furthermore, a newly developed Inertial Measurement Unit (IMU) encoder is included to improve the effectiveness of feature extraction using residual connections and channel alignment, allowing the efficient use of historical inertial data. A parallel encoding strategy uses two independently initialized encoders. Features are extracted from different dimensions by this strategy, strengthening the model’s ability to detect complex patterns. Experimental results for publicly shared datasets show that RWKV-VIO prioritizes computational efficiency and lightweight design. It significantly reduces model size and inference time compared to existing advanced methods while achieving top-ranked positioning accuracy among evaluated approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25185737
- https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827
- OA Status
- gold
- Cited By
- 1
- References
- 46
- OpenAlex ID
- https://openalex.org/W4414206201
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414206201Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25185737Digital Object Identifier
- Title
-
RWKV-VIO: An Efficient and Low-Drift Visual–Inertial Odometry Using an End-to-End Deep NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-15Full publication date if available
- Authors
-
Jiaxi Yang, Xiaoming Xu, Zeyuan Xu, Zhigang Wu, Weimeng ChuList of authors in order
- Landing page
-
https://doi.org/10.3390/s25185737Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827Direct OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414206201 |
|---|---|
| doi | https://doi.org/10.3390/s25185737 |
| ids.doi | https://doi.org/10.3390/s25185737 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41012976 |
| ids.openalex | https://openalex.org/W4414206201 |
| fwci | 6.92871482 |
| type | article |
| title | RWKV-VIO: An Efficient and Low-Drift Visual–Inertial Odometry Using an End-to-End Deep Network |
| biblio.issue | 18 |
| biblio.volume | 25 |
| biblio.last_page | 5737 |
| biblio.first_page | 5737 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.996999979019165 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| language | en |
| locations[0].id | doi:10.3390/s25185737 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25185737 |
| locations[1].id | pmid:41012976 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41012976 |
| locations[2].id | pmh:oai:doaj.org/article:fa9ae3d251d74d968a5e3a2671cc9b49 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 18, p 5737 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/fa9ae3d251d74d968a5e3a2671cc9b49 |
| locations[3].id | pmh:oai:europepmc.org:11281813 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12473207 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101154869 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jiaxi Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[0].institutions[0].id | https://openalex.org/I157773358 |
| authorships[0].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Sun Yat-sen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiaxi Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[1].author.id | https://openalex.org/A5031122489 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6153-8742 |
| authorships[1].author.display_name | Xiaoming Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaoming Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[2].author.id | https://openalex.org/A5017181118 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1669-6247 |
| authorships[2].author.display_name | Zeyuan Xu |
| authorships[2].countries | IT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25217355 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy |
| authorships[2].institutions[0].id | https://openalex.org/I25217355 |
| authorships[2].institutions[0].ror | https://ror.org/00s6t1f81 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25217355 |
| authorships[2].institutions[0].country_code | IT |
| authorships[2].institutions[0].display_name | University of Pavia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeyuan Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy |
| authorships[3].author.id | https://openalex.org/A5087353591 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6782-9249 |
| authorships[3].author.display_name | Zhigang Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[3].institutions[0].id | https://openalex.org/I157773358 |
| authorships[3].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Sun Yat-sen University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhigang Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[4].author.id | https://openalex.org/A5046203160 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-4276-0972 |
| authorships[4].author.display_name | Weimeng Chu |
| authorships[4].countries | CN, SG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I157773358 |
| authorships[4].affiliations[1].raw_affiliation_string | School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| authorships[4].institutions[0].id | https://openalex.org/I157773358 |
| authorships[4].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Sun Yat-sen University |
| authorships[4].institutions[1].id | https://openalex.org/I165932596 |
| authorships[4].institutions[1].ror | https://ror.org/01tgyzw49 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I165932596 |
| authorships[4].institutions[1].country_code | SG |
| authorships[4].institutions[1].display_name | National University of Singapore |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Weimeng Chu |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Mechanical Engineering, National University of Singapore, Singapore 119077, Singapore, School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou 510275, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RWKV-VIO: An Efficient and Low-Drift Visual–Inertial Odometry Using an End-to-End Deep Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25185737 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25185737 |
| primary_location.id | doi:10.3390/s25185737 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/18/5737/pdf?version=1757928827 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25185737 |
| publication_date | 2025-09-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3092029510, https://openalex.org/W4412931402, https://openalex.org/W4412081542, https://openalex.org/W4403456046, https://openalex.org/W3205609378, https://openalex.org/W4312127549, https://openalex.org/W4400647255, https://openalex.org/W2911615283, https://openalex.org/W4317821495, https://openalex.org/W4396855984, https://openalex.org/W4386973845, https://openalex.org/W2163496225, https://openalex.org/W4391528195, https://openalex.org/W2461937780, https://openalex.org/W2474281075, https://openalex.org/W1970504153, https://openalex.org/W3191699310, https://openalex.org/W2745859992, https://openalex.org/W3043971245, https://openalex.org/W4246614213, https://openalex.org/W2919203733, https://openalex.org/W4312627498, https://openalex.org/W4297094408, https://openalex.org/W2064675550, https://openalex.org/W2157331557, https://openalex.org/W3108746553, https://openalex.org/W4389524555, https://openalex.org/W2952348863, https://openalex.org/W2598706937, https://openalex.org/W2962867206, https://openalex.org/W4282933345, https://openalex.org/W3003233851, https://openalex.org/W2985775862, https://openalex.org/W2958731371, https://openalex.org/W3163609307, https://openalex.org/W2963962620, https://openalex.org/W3177318507, https://openalex.org/W2560474170, https://openalex.org/W2075157159, https://openalex.org/W4250482878, https://openalex.org/W2150066425, https://openalex.org/W764651262, https://openalex.org/W3124420883, https://openalex.org/W4377866072, https://openalex.org/W3106440972, https://openalex.org/W3171665133 |
| referenced_works_count | 46 |
| abstract_inverted_index.A | 126 |
| abstract_inverted_index.a | 4, 64, 78, 95 |
| abstract_inverted_index.It | 167 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.by | 141 |
| abstract_inverted_index.in | 20, 91 |
| abstract_inverted_index.is | 3, 75, 103 |
| abstract_inverted_index.of | 109, 122 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.to | 40, 105, 148, 176 |
| abstract_inverted_index.Key | 61 |
| abstract_inverted_index.The | 72 |
| abstract_inverted_index.and | 10, 23, 35, 81, 115, 164, 172 |
| abstract_inverted_index.are | 136 |
| abstract_inverted_index.for | 7, 154 |
| abstract_inverted_index.key | 18 |
| abstract_inverted_index.the | 69, 88, 107, 119, 145 |
| abstract_inverted_index.two | 131 |
| abstract_inverted_index.use | 121 |
| abstract_inverted_index.Long | 30 |
| abstract_inverted_index.RWKV | 70 |
| abstract_inverted_index.Unit | 100 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.face | 17 |
| abstract_inverted_index.from | 138 |
| abstract_inverted_index.high | 49 |
| abstract_inverted_index.show | 158 |
| abstract_inverted_index.size | 171 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 159 |
| abstract_inverted_index.this | 56, 142 |
| abstract_inverted_index.time | 174 |
| abstract_inverted_index.uses | 130 |
| abstract_inverted_index.with | 77 |
| abstract_inverted_index.work | 57 |
| abstract_inverted_index.(IMU) | 101 |
| abstract_inverted_index.(VIO) | 2 |
| abstract_inverted_index.Value | 62 |
| abstract_inverted_index.among | 185 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.data. | 125 |
| abstract_inverted_index.model | 170 |
| abstract_inverted_index.newly | 96 |
| abstract_inverted_index.novel | 65 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.these | 54 |
| abstract_inverted_index.using | 112 |
| abstract_inverted_index.which | 85 |
| abstract_inverted_index.while | 47, 180 |
| abstract_inverted_index.(LSTM) | 33 |
| abstract_inverted_index.Memory | 32 |
| abstract_inverted_index.across | 43 |
| abstract_inverted_index.burden | 90 |
| abstract_inverted_index.costs. | 51 |
| abstract_inverted_index.detect | 149 |
| abstract_inverted_index.handle | 41 |
| abstract_inverted_index.linear | 82 |
| abstract_inverted_index.scales | 46 |
| abstract_inverted_index.shared | 156 |
| abstract_inverted_index.ability | 147 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.causing | 48 |
| abstract_inverted_index.channel | 116 |
| abstract_inverted_index.complex | 150 |
| abstract_inverted_index.design. | 166 |
| abstract_inverted_index.encoder | 102 |
| abstract_inverted_index.feature | 110 |
| abstract_inverted_index.improve | 106 |
| abstract_inverted_index.issues, | 55 |
| abstract_inverted_index.methods | 16, 179 |
| abstract_inverted_index.reduces | 87, 169 |
| abstract_inverted_index.results | 153 |
| abstract_inverted_index.Features | 135 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.Inertial | 98 |
| abstract_inverted_index.Odometry | 1 |
| abstract_inverted_index.RWKV-VIO | 160 |
| abstract_inverted_index.Weighted | 60 |
| abstract_inverted_index.accuracy | 184 |
| abstract_inverted_index.advanced | 178 |
| abstract_inverted_index.allowing | 118 |
| abstract_inverted_index.compared | 175 |
| abstract_inverted_index.datasets | 157 |
| abstract_inverted_index.designed | 76 |
| abstract_inverted_index.encoding | 128 |
| abstract_inverted_index.existing | 13, 177 |
| abstract_inverted_index.included | 104 |
| abstract_inverted_index.inertial | 124 |
| abstract_inverted_index.methods, | 37 |
| abstract_inverted_index.modeling | 22 |
| abstract_inverted_index.networks | 34 |
| abstract_inverted_index.parallel | 127 |
| abstract_inverted_index.proposed | 73 |
| abstract_inverted_index.publicly | 155 |
| abstract_inverted_index.residual | 113 |
| abstract_inverted_index.strategy | 129 |
| abstract_inverted_index.struggle | 39 |
| abstract_inverted_index.temporal | 21, 45, 92 |
| abstract_inverted_index.achieving | 181 |
| abstract_inverted_index.developed | 97 |
| abstract_inverted_index.different | 44, 139 |
| abstract_inverted_index.efficient | 120 |
| abstract_inverted_index.encoders. | 134 |
| abstract_inverted_index.evaluated | 186 |
| abstract_inverted_index.extracted | 137 |
| abstract_inverted_index.framework | 66, 74 |
| abstract_inverted_index.inference | 173 |
| abstract_inverted_index.modeling. | 93 |
| abstract_inverted_index.model’s | 146 |
| abstract_inverted_index.patterns. | 151 |
| abstract_inverted_index.robotics. | 11 |
| abstract_inverted_index.strategy, | 143 |
| abstract_inverted_index.structure | 80 |
| abstract_inverted_index.Receptance | 59 |
| abstract_inverted_index.Short-Term | 31 |
| abstract_inverted_index.alignment, | 117 |
| abstract_inverted_index.autonomous | 8 |
| abstract_inverted_index.challenges | 19 |
| abstract_inverted_index.dimensions | 140 |
| abstract_inverted_index.efficiency | 163 |
| abstract_inverted_index.extraction | 111 |
| abstract_inverted_index.historical | 123 |
| abstract_inverted_index.introduces | 58 |
| abstract_inverted_index.navigation | 9 |
| abstract_inverted_index.technology | 6 |
| abstract_inverted_index.top-ranked | 182 |
| abstract_inverted_index.(RWKV)-VIO, | 63 |
| abstract_inverted_index.Measurement | 99 |
| abstract_inverted_index.approaches, | 27 |
| abstract_inverted_index.approaches. | 187 |
| abstract_inverted_index.complexity, | 84 |
| abstract_inverted_index.connections | 114 |
| abstract_inverted_index.effectively | 86 |
| abstract_inverted_index.efficiency. | 25 |
| abstract_inverted_index.initialized | 133 |
| abstract_inverted_index.lightweight | 79, 165 |
| abstract_inverted_index.positioning | 183 |
| abstract_inverted_index.prioritizes | 161 |
| abstract_inverted_index.Conventional | 26 |
| abstract_inverted_index.Experimental | 152 |
| abstract_inverted_index.Furthermore, | 94 |
| abstract_inverted_index.Transformers | 36 |
| abstract_inverted_index.dependencies | 42 |
| abstract_inverted_index.foundational | 5 |
| abstract_inverted_index.architecture. | 71 |
| abstract_inverted_index.computational | 24, 50, 83, 89, 162 |
| abstract_inverted_index.effectiveness | 108 |
| abstract_inverted_index.independently | 132 |
| abstract_inverted_index.significantly | 168 |
| abstract_inverted_index.strengthening | 144 |
| abstract_inverted_index.learning-based | 15 |
| abstract_inverted_index.Visual–Inertial | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5046203160 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I157773358, https://openalex.org/I165932596 |
| citation_normalized_percentile.value | 0.95003307 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |