SADBA: Self-Adaptive Distributed Backdoor Attack Against Federated Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i16.33820
Backdoor attacks in federated learning (FL) face challenges such as lower attack success rates and compromised main task accuracy (MA) compared to local training. Existing methods like distributed backdoor attack (DBA) mitigate these issues by modifying malicious clients’ updates and partitioning global triggers to enhance backdoor persistence and stealth. The recent full combination backdoor attack (FCBA) further improves backdoor efficiency with a full combination strategy. However, these methods are mainly applicable in small-scale FL. In large-scale FL, small trigger patterns weaken impact, and scaling them requires controlling exponentially more clients, which poses significant challenges, while simply reverting to DBA may decrease backdoor performance. To overcome these challenges, we propose the self-adaptive distributed backdoor attack (SADBA), which achieves similar performance to FCBA with a lower percentage of malicious clients (PMC). It also adapts more flexibly through an optimized model poisoning strategy and a self-adaptive data poisoning strategy. Experiments demonstrate SADBA outperforms state-of-the-art methods, achieving higher or comparable backdoor performance and MA across various datasets with limited PMC.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i16.33820
- https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409364398
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409364398Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i16.33820Digital Object Identifier
- Title
-
SADBA: Self-Adaptive Distributed Backdoor Attack Against Federated LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Jun Feng, Ying‐Cheng Lai, Hong Sun, Bocheng RenList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i16.33820Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975Direct OA link when available
- Concepts
-
Backdoor, Computer science, Computer security, Distributed computingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409364398 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i16.33820 |
| ids.doi | https://doi.org/10.1609/aaai.v39i16.33820 |
| ids.openalex | https://openalex.org/W4409364398 |
| fwci | 6.43082309 |
| type | article |
| title | SADBA: Self-Adaptive Distributed Backdoor Attack Against Federated Learning |
| biblio.issue | 16 |
| biblio.volume | 39 |
| biblio.last_page | 16576 |
| biblio.first_page | 16568 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9911999702453613 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781045450 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9900085926055908 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254569 |
| concepts[0].display_name | Backdoor |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6460272073745728 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5871000289916992 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.34018397331237793 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| keywords[0].id | https://openalex.org/keywords/backdoor |
| keywords[0].score | 0.9900085926055908 |
| keywords[0].display_name | Backdoor |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6460272073745728 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.5871000289916992 |
| keywords[2].display_name | Computer security |
| keywords[3].id | https://openalex.org/keywords/distributed-computing |
| keywords[3].score | 0.34018397331237793 |
| keywords[3].display_name | Distributed computing |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i16.33820 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i16.33820 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5002937692 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9917-1819 |
| authorships[0].author.display_name | Jun Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jun Feng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102995786 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0723-733X |
| authorships[1].author.display_name | Ying‐Cheng Lai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuzhe Lai |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114833394 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9249-5375 |
| authorships[2].author.display_name | Hong Sun |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hong Sun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012121138 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6594-1421 |
| authorships[3].author.display_name | Bocheng Ren |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bocheng Ren |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SADBA: Self-Adaptive Distributed Backdoor Attack Against Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4320031223, https://openalex.org/W4200629851, https://openalex.org/W4281902577, https://openalex.org/W4309417370, https://openalex.org/W4292107232, https://openalex.org/W3009072493, https://openalex.org/W4401407399 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i16.33820 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i16.33820 |
| primary_location.id | doi:10.1609/aaai.v39i16.33820 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/33820/35975 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i16.33820 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61, 122, 141 |
| abstract_inverted_index.In | 74 |
| abstract_inverted_index.It | 129 |
| abstract_inverted_index.MA | 159 |
| abstract_inverted_index.To | 103 |
| abstract_inverted_index.an | 135 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.by | 34 |
| abstract_inverted_index.in | 2, 71 |
| abstract_inverted_index.of | 125 |
| abstract_inverted_index.or | 154 |
| abstract_inverted_index.to | 21, 43, 97, 119 |
| abstract_inverted_index.we | 107 |
| abstract_inverted_index.DBA | 98 |
| abstract_inverted_index.FL, | 76 |
| abstract_inverted_index.FL. | 73 |
| abstract_inverted_index.The | 49 |
| abstract_inverted_index.and | 14, 39, 47, 82, 140, 158 |
| abstract_inverted_index.are | 68 |
| abstract_inverted_index.may | 99 |
| abstract_inverted_index.the | 109 |
| abstract_inverted_index.(FL) | 5 |
| abstract_inverted_index.(MA) | 19 |
| abstract_inverted_index.FCBA | 120 |
| abstract_inverted_index.PMC. | 165 |
| abstract_inverted_index.also | 130 |
| abstract_inverted_index.data | 143 |
| abstract_inverted_index.face | 6 |
| abstract_inverted_index.full | 51, 62 |
| abstract_inverted_index.like | 26 |
| abstract_inverted_index.main | 16 |
| abstract_inverted_index.more | 88, 132 |
| abstract_inverted_index.such | 8 |
| abstract_inverted_index.task | 17 |
| abstract_inverted_index.them | 84 |
| abstract_inverted_index.with | 60, 121, 163 |
| abstract_inverted_index.(DBA) | 30 |
| abstract_inverted_index.SADBA | 148 |
| abstract_inverted_index.local | 22 |
| abstract_inverted_index.lower | 10, 123 |
| abstract_inverted_index.model | 137 |
| abstract_inverted_index.poses | 91 |
| abstract_inverted_index.rates | 13 |
| abstract_inverted_index.small | 77 |
| abstract_inverted_index.these | 32, 66, 105 |
| abstract_inverted_index.which | 90, 115 |
| abstract_inverted_index.while | 94 |
| abstract_inverted_index.(FCBA) | 55 |
| abstract_inverted_index.(PMC). | 128 |
| abstract_inverted_index.across | 160 |
| abstract_inverted_index.adapts | 131 |
| abstract_inverted_index.attack | 11, 29, 54, 113 |
| abstract_inverted_index.global | 41 |
| abstract_inverted_index.higher | 153 |
| abstract_inverted_index.issues | 33 |
| abstract_inverted_index.mainly | 69 |
| abstract_inverted_index.recent | 50 |
| abstract_inverted_index.simply | 95 |
| abstract_inverted_index.weaken | 80 |
| abstract_inverted_index.attacks | 1 |
| abstract_inverted_index.clients | 127 |
| abstract_inverted_index.enhance | 44 |
| abstract_inverted_index.further | 56 |
| abstract_inverted_index.impact, | 81 |
| abstract_inverted_index.limited | 164 |
| abstract_inverted_index.methods | 25, 67 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.scaling | 83 |
| abstract_inverted_index.similar | 117 |
| abstract_inverted_index.success | 12 |
| abstract_inverted_index.through | 134 |
| abstract_inverted_index.trigger | 78 |
| abstract_inverted_index.updates | 38 |
| abstract_inverted_index.various | 161 |
| abstract_inverted_index.(SADBA), | 114 |
| abstract_inverted_index.Backdoor | 0 |
| abstract_inverted_index.Existing | 24 |
| abstract_inverted_index.However, | 65 |
| abstract_inverted_index.accuracy | 18 |
| abstract_inverted_index.achieves | 116 |
| abstract_inverted_index.backdoor | 28, 45, 53, 58, 101, 112, 156 |
| abstract_inverted_index.clients, | 89 |
| abstract_inverted_index.compared | 20 |
| abstract_inverted_index.datasets | 162 |
| abstract_inverted_index.decrease | 100 |
| abstract_inverted_index.flexibly | 133 |
| abstract_inverted_index.improves | 57 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.methods, | 151 |
| abstract_inverted_index.mitigate | 31 |
| abstract_inverted_index.overcome | 104 |
| abstract_inverted_index.patterns | 79 |
| abstract_inverted_index.requires | 85 |
| abstract_inverted_index.stealth. | 48 |
| abstract_inverted_index.strategy | 139 |
| abstract_inverted_index.triggers | 42 |
| abstract_inverted_index.achieving | 152 |
| abstract_inverted_index.federated | 3 |
| abstract_inverted_index.malicious | 36, 126 |
| abstract_inverted_index.modifying | 35 |
| abstract_inverted_index.optimized | 136 |
| abstract_inverted_index.poisoning | 138, 144 |
| abstract_inverted_index.reverting | 96 |
| abstract_inverted_index.strategy. | 64, 145 |
| abstract_inverted_index.training. | 23 |
| abstract_inverted_index.applicable | 70 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.clients’ | 37 |
| abstract_inverted_index.comparable | 155 |
| abstract_inverted_index.efficiency | 59 |
| abstract_inverted_index.percentage | 124 |
| abstract_inverted_index.Experiments | 146 |
| abstract_inverted_index.challenges, | 93, 106 |
| abstract_inverted_index.combination | 52, 63 |
| abstract_inverted_index.compromised | 15 |
| abstract_inverted_index.controlling | 86 |
| abstract_inverted_index.demonstrate | 147 |
| abstract_inverted_index.distributed | 27, 111 |
| abstract_inverted_index.large-scale | 75 |
| abstract_inverted_index.outperforms | 149 |
| abstract_inverted_index.performance | 118, 157 |
| abstract_inverted_index.persistence | 46 |
| abstract_inverted_index.significant | 92 |
| abstract_inverted_index.small-scale | 72 |
| abstract_inverted_index.partitioning | 40 |
| abstract_inverted_index.performance. | 102 |
| abstract_inverted_index.exponentially | 87 |
| abstract_inverted_index.self-adaptive | 110, 142 |
| abstract_inverted_index.state-of-the-art | 150 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.90653266 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |