SafeDrive: Knowledge- and data-driven risk-sensitive decision-making for autonomous vehicles with Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.aap.2025.108299
Recent advancements in autonomous vehicles (AVs) leverage Large Language Models (LLMs) to perform well in normal driving scenarios. However, ensuring safety in dynamic, high-risk environments and managing safety-critical long-tail events remains a significant challenge. To address these issues, we propose SafeDrive, a knowledge- and data-driven risk-sensitive decision-making framework, to enhance AV safety and adaptability. The proposed framework introduces a modular system comprising: (1) a Risk Module for comprehensive quantification of multi-factor coupled risks involving driver, vehicle, and road interactions; (2) a Memory Module for storing and retrieving typical scenarios to improve adaptability; (3) a LLM-powered Reasoning Module for context-aware safety decision-making; and (4) a Reflection Module for refining decisions through iterative learning. By integrating knowledge-driven insights with adaptive learning mechanisms, the framework ensures robust decision-making under uncertain conditions. Extensive evaluations on real-world traffic datasets characterized by dynamic and high-risk scenarios, including highways (HighD), intersections (InD), and roundabouts (RounD), validate the framework's ability to enhance decision-making safety (achieving a 100% safety rate), replicate human-like driving behaviors (with decision alignment exceeding 85%), and adapt effectively to unpredictable scenarios. The proposed framework of SafeDrive establishes a novel paradigm for integrating knowledge- and data-driven methods, highlighting significant potential to improve the safety and adaptability of autonomous driving in long-tail or high-risk traffic scenarios. Project page: https://mezzi33.github.io/SafeDrive/.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aap.2025.108299
- OA Status
- hybrid
- References
- 18
- OpenAlex ID
- https://openalex.org/W4415664683
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415664683Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aap.2025.108299Digital Object Identifier
- Title
-
SafeDrive: Knowledge- and data-driven risk-sensitive decision-making for autonomous vehicles with Large Language ModelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-29Full publication date if available
- Authors
-
Zhiyuan Zhou, Heye Huang, Boqi Li, Shiyue Zhao, Yao Mu, Jianqiang WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aap.2025.108299Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aap.2025.108299Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
18Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415664683 |
|---|---|
| doi | https://doi.org/10.1016/j.aap.2025.108299 |
| ids.doi | https://doi.org/10.1016/j.aap.2025.108299 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41166802 |
| ids.openalex | https://openalex.org/W4415664683 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003657 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Decision Making |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001334 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Automobile Driving |
| mesh[3].qualifier_ui | Q000517 |
| mesh[3].descriptor_ui | D000063 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | prevention & control |
| mesh[3].descriptor_name | Accidents, Traffic |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001336 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Automobiles |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D018570 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Risk Assessment |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012449 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Safety |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001331 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Automation |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D007802 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Language |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000098342 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Large Language Models |
| type | article |
| title | SafeDrive: Knowledge- and data-driven risk-sensitive decision-making for autonomous vehicles with Large Language Models |
| biblio.issue | |
| biblio.volume | 224 |
| biblio.last_page | 108299 |
| biblio.first_page | 108299 |
| is_xpac | False |
| apc_list.value | 3940 |
| apc_list.currency | USD |
| apc_list.value_usd | 3940 |
| apc_paid.value | 3940 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3940 |
| language | en |
| locations[0].id | doi:10.1016/j.aap.2025.108299 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S188336720 |
| locations[0].source.issn | 0001-4575, 1879-2057 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0001-4575 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Accident Analysis & Prevention |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Accident Analysis & Prevention |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aap.2025.108299 |
| locations[1].id | pmid:41166802 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Accident; analysis and prevention |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41166802 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5068134036 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0341-3201 |
| authorships[0].author.display_name | Zhiyuan Zhou |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Financial Engineering, University of Southern California, CA 90089, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I1174212 |
| authorships[0].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern California |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiyuan Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Financial Engineering, University of Southern California, CA 90089, USA. |
| authorships[1].author.id | https://openalex.org/A5042865025 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8964-8764 |
| authorships[1].author.display_name | Heye Huang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Wisconsin-Madison, WI 53706, USA. Electronic address: [email protected]. |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Heye Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Wisconsin-Madison, WI 53706, USA. Electronic address: [email protected]. |
| authorships[2].author.id | https://openalex.org/A5012002621 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Boqi Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I27837315 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I27837315 |
| authorships[2].institutions[0].ror | https://ror.org/00jmfr291 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27837315 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Michigan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Boqi Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48105, USA. |
| authorships[3].author.id | https://openalex.org/A5068593680 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6742-2767 |
| authorships[3].author.display_name | Shiyue Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China. |
| authorships[3].institutions[0].id | https://openalex.org/I99065089 |
| authorships[3].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tsinghua University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shiyue Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China. |
| authorships[4].author.id | https://openalex.org/A5109243996 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yao Mu |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, The University of Hong Kong, Hong Kong, China. |
| authorships[4].institutions[0].id | https://openalex.org/I889458895 |
| authorships[4].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | University of Hong Kong |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yao Mu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, The University of Hong Kong, Hong Kong, China. |
| authorships[5].author.id | https://openalex.org/A5100436368 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4363-6108 |
| authorships[5].author.display_name | Jianqiang Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China. |
| authorships[5].institutions[0].id | https://openalex.org/I99065089 |
| authorships[5].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tsinghua University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jianqiang Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aap.2025.108299 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | SafeDrive: Knowledge- and data-driven risk-sensitive decision-making for autonomous vehicles with Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.aap.2025.108299 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S188336720 |
| best_oa_location.source.issn | 0001-4575, 1879-2057 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0001-4575 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Accident Analysis & Prevention |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Accident Analysis & Prevention |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aap.2025.108299 |
| primary_location.id | doi:10.1016/j.aap.2025.108299 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S188336720 |
| primary_location.source.issn | 0001-4575, 1879-2057 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0001-4575 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Accident Analysis & Prevention |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Accident Analysis & Prevention |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aap.2025.108299 |
| publication_date | 2025-10-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4402216216, https://openalex.org/W4226286144, https://openalex.org/W4394862732, https://openalex.org/W2070946303, https://openalex.org/W4388821995, https://openalex.org/W3061973130, https://openalex.org/W4404101084, https://openalex.org/W2920107241, https://openalex.org/W2152374007, https://openalex.org/W3090622150, https://openalex.org/W4229014698, https://openalex.org/W2073177254, https://openalex.org/W3118813854, https://openalex.org/W3045160300, https://openalex.org/W4393065402, https://openalex.org/W1992085841, https://openalex.org/W4401507446, https://openalex.org/W4401990178 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 31, 41, 58, 63, 80, 93, 103, 157, 182 |
| abstract_inverted_index.AV | 50 |
| abstract_inverted_index.By | 112 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 2, 14, 21, 203 |
| abstract_inverted_index.of | 69, 179, 200 |
| abstract_inverted_index.on | 130 |
| abstract_inverted_index.or | 205 |
| abstract_inverted_index.to | 11, 48, 89, 152, 173, 194 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.(1) | 62 |
| abstract_inverted_index.(2) | 79 |
| abstract_inverted_index.(3) | 92 |
| abstract_inverted_index.(4) | 102 |
| abstract_inverted_index.The | 54, 176 |
| abstract_inverted_index.and | 25, 43, 52, 76, 85, 101, 137, 145, 170, 188, 198 |
| abstract_inverted_index.for | 66, 83, 97, 106, 185 |
| abstract_inverted_index.the | 120, 149, 196 |
| abstract_inverted_index.100% | 158 |
| abstract_inverted_index.Risk | 64 |
| abstract_inverted_index.road | 77 |
| abstract_inverted_index.well | 13 |
| abstract_inverted_index.with | 116 |
| abstract_inverted_index.(AVs) | 5 |
| abstract_inverted_index.(with | 165 |
| abstract_inverted_index.85%), | 169 |
| abstract_inverted_index.Large | 7 |
| abstract_inverted_index.adapt | 171 |
| abstract_inverted_index.novel | 183 |
| abstract_inverted_index.page: | 210 |
| abstract_inverted_index.risks | 72 |
| abstract_inverted_index.these | 36 |
| abstract_inverted_index.under | 125 |
| abstract_inverted_index.(InD), | 144 |
| abstract_inverted_index.(LLMs) | 10 |
| abstract_inverted_index.Memory | 81 |
| abstract_inverted_index.Models | 9 |
| abstract_inverted_index.Module | 65, 82, 96, 105 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.events | 29 |
| abstract_inverted_index.normal | 15 |
| abstract_inverted_index.rate), | 160 |
| abstract_inverted_index.robust | 123 |
| abstract_inverted_index.safety | 20, 51, 99, 155, 159, 197 |
| abstract_inverted_index.system | 60 |
| abstract_inverted_index.Project | 209 |
| abstract_inverted_index.ability | 151 |
| abstract_inverted_index.address | 35 |
| abstract_inverted_index.coupled | 71 |
| abstract_inverted_index.driver, | 74 |
| abstract_inverted_index.driving | 16, 163, 202 |
| abstract_inverted_index.dynamic | 136 |
| abstract_inverted_index.enhance | 49, 153 |
| abstract_inverted_index.ensures | 122 |
| abstract_inverted_index.improve | 90, 195 |
| abstract_inverted_index.issues, | 37 |
| abstract_inverted_index.modular | 59 |
| abstract_inverted_index.perform | 12 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.storing | 84 |
| abstract_inverted_index.through | 109 |
| abstract_inverted_index.traffic | 132, 207 |
| abstract_inverted_index.typical | 87 |
| abstract_inverted_index.(HighD), | 142 |
| abstract_inverted_index.(RounD), | 147 |
| abstract_inverted_index.However, | 18 |
| abstract_inverted_index.Language | 8 |
| abstract_inverted_index.adaptive | 117 |
| abstract_inverted_index.datasets | 133 |
| abstract_inverted_index.decision | 166 |
| abstract_inverted_index.dynamic, | 22 |
| abstract_inverted_index.ensuring | 19 |
| abstract_inverted_index.highways | 141 |
| abstract_inverted_index.insights | 115 |
| abstract_inverted_index.learning | 118 |
| abstract_inverted_index.leverage | 6 |
| abstract_inverted_index.managing | 26 |
| abstract_inverted_index.methods, | 190 |
| abstract_inverted_index.paradigm | 184 |
| abstract_inverted_index.proposed | 55, 177 |
| abstract_inverted_index.refining | 107 |
| abstract_inverted_index.validate | 148 |
| abstract_inverted_index.vehicle, | 75 |
| abstract_inverted_index.vehicles | 4 |
| abstract_inverted_index.Extensive | 128 |
| abstract_inverted_index.Reasoning | 95 |
| abstract_inverted_index.SafeDrive | 180 |
| abstract_inverted_index.alignment | 167 |
| abstract_inverted_index.behaviors | 164 |
| abstract_inverted_index.decisions | 108 |
| abstract_inverted_index.exceeding | 168 |
| abstract_inverted_index.framework | 56, 121, 178 |
| abstract_inverted_index.high-risk | 23, 138, 206 |
| abstract_inverted_index.including | 140 |
| abstract_inverted_index.involving | 73 |
| abstract_inverted_index.iterative | 110 |
| abstract_inverted_index.learning. | 111 |
| abstract_inverted_index.long-tail | 28, 204 |
| abstract_inverted_index.potential | 193 |
| abstract_inverted_index.replicate | 161 |
| abstract_inverted_index.scenarios | 88 |
| abstract_inverted_index.uncertain | 126 |
| abstract_inverted_index.(achieving | 156 |
| abstract_inverted_index.Reflection | 104 |
| abstract_inverted_index.SafeDrive, | 40 |
| abstract_inverted_index.autonomous | 3, 201 |
| abstract_inverted_index.challenge. | 33 |
| abstract_inverted_index.framework, | 47 |
| abstract_inverted_index.human-like | 162 |
| abstract_inverted_index.introduces | 57 |
| abstract_inverted_index.knowledge- | 42, 187 |
| abstract_inverted_index.real-world | 131 |
| abstract_inverted_index.retrieving | 86 |
| abstract_inverted_index.scenarios, | 139 |
| abstract_inverted_index.scenarios. | 17, 175, 208 |
| abstract_inverted_index.LLM-powered | 94 |
| abstract_inverted_index.comprising: | 61 |
| abstract_inverted_index.conditions. | 127 |
| abstract_inverted_index.data-driven | 44, 189 |
| abstract_inverted_index.effectively | 172 |
| abstract_inverted_index.establishes | 181 |
| abstract_inverted_index.evaluations | 129 |
| abstract_inverted_index.framework's | 150 |
| abstract_inverted_index.integrating | 113, 186 |
| abstract_inverted_index.mechanisms, | 119 |
| abstract_inverted_index.roundabouts | 146 |
| abstract_inverted_index.significant | 32, 192 |
| abstract_inverted_index.adaptability | 199 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.environments | 24 |
| abstract_inverted_index.highlighting | 191 |
| abstract_inverted_index.multi-factor | 70 |
| abstract_inverted_index.adaptability. | 53 |
| abstract_inverted_index.adaptability; | 91 |
| abstract_inverted_index.characterized | 134 |
| abstract_inverted_index.comprehensive | 67 |
| abstract_inverted_index.context-aware | 98 |
| abstract_inverted_index.interactions; | 78 |
| abstract_inverted_index.intersections | 143 |
| abstract_inverted_index.unpredictable | 174 |
| abstract_inverted_index.quantification | 68 |
| abstract_inverted_index.risk-sensitive | 45 |
| abstract_inverted_index.decision-making | 46, 124, 154 |
| abstract_inverted_index.safety-critical | 27 |
| abstract_inverted_index.decision-making; | 100 |
| abstract_inverted_index.knowledge-driven | 114 |
| abstract_inverted_index.https://mezzi33.github.io/SafeDrive/. | 211 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |