Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.16131
DETR-like methods have significantly increased detection performance in an end-to-end manner. The mainstream two-stage frameworks of them perform dense self-attention and select a fraction of queries for sparse cross-attention, which is proven effective for improving performance but also introduces a heavy computational burden and high dependence on stable query selection. This paper demonstrates that suboptimal two-stage selection strategies result in scale bias and redundancy due to the mismatch between selected queries and objects in two-stage initialization. To address these issues, we propose hierarchical salience filtering refinement, which performs transformer encoding only on filtered discriminative queries, for a better trade-off between computational efficiency and precision. The filtering process overcomes scale bias through a novel scale-independent salience supervision. To compensate for the semantic misalignment among queries, we introduce elaborate query refinement modules for stable two-stage initialization. Based on above improvements, the proposed Salience DETR achieves significant improvements of +4.0% AP, +0.2% AP, +4.4% AP on three challenging task-specific detection datasets, as well as 49.2% AP on COCO 2017 with less FLOPs. The code is available at https://github.com/xiuqhou/Salience-DETR.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.16131
- https://arxiv.org/pdf/2403.16131
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393213015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393213015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.16131Digital Object Identifier
- Title
-
Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering RefinementWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.16131Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.16131Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.16131Direct OA link when available
- Concepts
-
Salience (neuroscience), Transformer, Computer science, Psychology, Artificial intelligence, Engineering, Electrical engineering, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393213015 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.16131 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.16131 |
| ids.openalex | https://openalex.org/W4393213015 |
| fwci | |
| type | preprint |
| title | Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9621999859809875 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9050999879837036 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108154423 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8058507442474365 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1469792 |
| concepts[0].display_name | Salience (neuroscience) |
| concepts[1].id | https://openalex.org/C66322947 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5432719588279724 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[1].display_name | Transformer |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4134792387485504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3613174557685852 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3051599860191345 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.11473685503005981 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C119599485 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0679081380367279 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[6].display_name | Electrical engineering |
| concepts[7].id | https://openalex.org/C165801399 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[7].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/salience |
| keywords[0].score | 0.8058507442474365 |
| keywords[0].display_name | Salience (neuroscience) |
| keywords[1].id | https://openalex.org/keywords/transformer |
| keywords[1].score | 0.5432719588279724 |
| keywords[1].display_name | Transformer |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4134792387485504 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.3613174557685852 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3051599860191345 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.11473685503005981 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/electrical-engineering |
| keywords[6].score | 0.0679081380367279 |
| keywords[6].display_name | Electrical engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.16131 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.16131 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.16131 |
| locations[1].id | doi:10.48550/arxiv.2403.16131 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.16131 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5069152360 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xiuquan Hou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hou, Xiuquan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033808402 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0693-6574 |
| authorships[1].author.display_name | Meiqin Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Meiqin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003643230 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5117-3110 |
| authorships[2].author.display_name | Senlin Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Senlin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101947241 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8535-9527 |
| authorships[3].author.display_name | Ping Wei |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei, Ping |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5077852542 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1710-3818 |
| authorships[4].author.display_name | Badong Chen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chen, Badong |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.16131 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Salience DETR: Enhancing Detection Transformer with Hierarchical Salience Filtering Refinement |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9621999859809875 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2117158897, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.16131 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.16131 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.16131 |
| primary_location.id | pmh:oai:arXiv.org:2403.16131 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.16131 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.16131 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 39, 96, 111 |
| abstract_inverted_index.AP | 151, 162 |
| abstract_inverted_index.To | 76, 116 |
| abstract_inverted_index.an | 8 |
| abstract_inverted_index.as | 158, 160 |
| abstract_inverted_index.at | 173 |
| abstract_inverted_index.in | 7, 59, 73 |
| abstract_inverted_index.is | 30, 171 |
| abstract_inverted_index.of | 15, 24, 145 |
| abstract_inverted_index.on | 46, 91, 135, 152, 163 |
| abstract_inverted_index.to | 65 |
| abstract_inverted_index.we | 80, 124 |
| abstract_inverted_index.AP, | 147, 149 |
| abstract_inverted_index.The | 11, 104, 169 |
| abstract_inverted_index.and | 20, 43, 62, 71, 102 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.due | 64 |
| abstract_inverted_index.for | 26, 33, 95, 118, 130 |
| abstract_inverted_index.the | 66, 119, 138 |
| abstract_inverted_index.2017 | 165 |
| abstract_inverted_index.COCO | 164 |
| abstract_inverted_index.DETR | 141 |
| abstract_inverted_index.This | 50 |
| abstract_inverted_index.also | 37 |
| abstract_inverted_index.bias | 61, 109 |
| abstract_inverted_index.code | 170 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.high | 44 |
| abstract_inverted_index.less | 167 |
| abstract_inverted_index.only | 90 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.them | 16 |
| abstract_inverted_index.well | 159 |
| abstract_inverted_index.with | 166 |
| abstract_inverted_index.+0.2% | 148 |
| abstract_inverted_index.+4.0% | 146 |
| abstract_inverted_index.+4.4% | 150 |
| abstract_inverted_index.49.2% | 161 |
| abstract_inverted_index.Based | 134 |
| abstract_inverted_index.above | 136 |
| abstract_inverted_index.among | 122 |
| abstract_inverted_index.dense | 18 |
| abstract_inverted_index.heavy | 40 |
| abstract_inverted_index.novel | 112 |
| abstract_inverted_index.paper | 51 |
| abstract_inverted_index.query | 48, 127 |
| abstract_inverted_index.scale | 60, 108 |
| abstract_inverted_index.these | 78 |
| abstract_inverted_index.three | 153 |
| abstract_inverted_index.which | 29, 86 |
| abstract_inverted_index.FLOPs. | 168 |
| abstract_inverted_index.better | 97 |
| abstract_inverted_index.burden | 42 |
| abstract_inverted_index.proven | 31 |
| abstract_inverted_index.result | 58 |
| abstract_inverted_index.select | 21 |
| abstract_inverted_index.sparse | 27 |
| abstract_inverted_index.stable | 47, 131 |
| abstract_inverted_index.address | 77 |
| abstract_inverted_index.between | 68, 99 |
| abstract_inverted_index.issues, | 79 |
| abstract_inverted_index.manner. | 10 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.modules | 129 |
| abstract_inverted_index.objects | 72 |
| abstract_inverted_index.perform | 17 |
| abstract_inverted_index.process | 106 |
| abstract_inverted_index.propose | 81 |
| abstract_inverted_index.queries | 25, 70 |
| abstract_inverted_index.through | 110 |
| abstract_inverted_index.Salience | 140 |
| abstract_inverted_index.achieves | 142 |
| abstract_inverted_index.encoding | 89 |
| abstract_inverted_index.filtered | 92 |
| abstract_inverted_index.fraction | 23 |
| abstract_inverted_index.mismatch | 67 |
| abstract_inverted_index.performs | 87 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.queries, | 94, 123 |
| abstract_inverted_index.salience | 83, 114 |
| abstract_inverted_index.selected | 69 |
| abstract_inverted_index.semantic | 120 |
| abstract_inverted_index.DETR-like | 0 |
| abstract_inverted_index.available | 172 |
| abstract_inverted_index.datasets, | 157 |
| abstract_inverted_index.detection | 5, 156 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.elaborate | 126 |
| abstract_inverted_index.filtering | 84, 105 |
| abstract_inverted_index.improving | 34 |
| abstract_inverted_index.increased | 4 |
| abstract_inverted_index.introduce | 125 |
| abstract_inverted_index.overcomes | 107 |
| abstract_inverted_index.selection | 56 |
| abstract_inverted_index.trade-off | 98 |
| abstract_inverted_index.two-stage | 13, 55, 74, 132 |
| abstract_inverted_index.compensate | 117 |
| abstract_inverted_index.dependence | 45 |
| abstract_inverted_index.efficiency | 101 |
| abstract_inverted_index.end-to-end | 9 |
| abstract_inverted_index.frameworks | 14 |
| abstract_inverted_index.introduces | 38 |
| abstract_inverted_index.mainstream | 12 |
| abstract_inverted_index.precision. | 103 |
| abstract_inverted_index.redundancy | 63 |
| abstract_inverted_index.refinement | 128 |
| abstract_inverted_index.selection. | 49 |
| abstract_inverted_index.strategies | 57 |
| abstract_inverted_index.suboptimal | 54 |
| abstract_inverted_index.challenging | 154 |
| abstract_inverted_index.performance | 6, 35 |
| abstract_inverted_index.refinement, | 85 |
| abstract_inverted_index.significant | 143 |
| abstract_inverted_index.transformer | 88 |
| abstract_inverted_index.demonstrates | 52 |
| abstract_inverted_index.hierarchical | 82 |
| abstract_inverted_index.improvements | 144 |
| abstract_inverted_index.misalignment | 121 |
| abstract_inverted_index.supervision. | 115 |
| abstract_inverted_index.computational | 41, 100 |
| abstract_inverted_index.improvements, | 137 |
| abstract_inverted_index.significantly | 3 |
| abstract_inverted_index.task-specific | 155 |
| abstract_inverted_index.discriminative | 93 |
| abstract_inverted_index.self-attention | 19 |
| abstract_inverted_index.initialization. | 75, 133 |
| abstract_inverted_index.cross-attention, | 28 |
| abstract_inverted_index.scale-independent | 113 |
| abstract_inverted_index.https://github.com/xiuqhou/Salience-DETR. | 174 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |