Sampling-Based Risk-Aware Path Planning Around Dynamic Engagement Zones Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.05480
Existing methods for avoiding dynamic engagement zones (EZs) and minimizing risk leverage the calculus of variations to obtain optimal paths. While such methods are deterministic, they scale poorly as the number of engagement zones increases. Furthermore, optimal-control based strategies are sensitive to initial guesses and often converge to local, rather than global, minima. This paper presents a novel sampling-based approach to obtain a feasible flight plan for a Dubins vehicle to reach a desired location in a bounded operating region in the presence of a large number of engagement zones. The dynamic EZs are coupled to the vehicle dynamics through its heading angle. Thus, the dynamic two-dimensional obstacles in the (x,y) plane can be transformed into three-dimensional static obstacles in a lifted (x,y,ψ) space. This insight is leveraged in the formulation of a Rapidly-exploring Random Tree (RRT*) algorithm. The algorithm is evaluated with a Monte Carlo experiment that randomizes EZ locations to characterize the success rate and average path length as a function of the number of EZs and as the computation time made available to the planner is increased.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.05480
- https://arxiv.org/pdf/2403.05480
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392682139
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392682139Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.05480Digital Object Identifier
- Title
-
Sampling-Based Risk-Aware Path Planning Around Dynamic Engagement ZonesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-08Full publication date if available
- Authors
-
Artur Wolek, Isaac E. Weintraub, Alexander Von Moll, David W. Casbeer, Satyanarayana G. ManyamList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.05480Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.05480Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.05480Direct OA link when available
- Concepts
-
Sampling (signal processing), Path (computing), Motion planning, Computer science, Artificial intelligence, Computer vision, Computer network, Robot, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392682139 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.05480 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.05480 |
| ids.openalex | https://openalex.org/W4392682139 |
| fwci | |
| type | preprint |
| title | Sampling-Based Risk-Aware Path Planning Around Dynamic Engagement Zones |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10586 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Robotic Path Planning Algorithms |
| topics[1].id | https://openalex.org/T10246 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9839000105857849 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Mobile Ad Hoc Networks |
| topics[2].id | https://openalex.org/T11500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9708999991416931 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Evacuation and Crowd Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C140779682 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6461682915687561 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[0].display_name | Sampling (signal processing) |
| concepts[1].id | https://openalex.org/C2777735758 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5844562649726868 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[1].display_name | Path (computing) |
| concepts[2].id | https://openalex.org/C81074085 |
| concepts[2].level | 3 |
| concepts[2].score | 0.4889315664768219 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q366872 |
| concepts[2].display_name | Motion planning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48342597484588623 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.21358022093772888 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.15197890996932983 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C31258907 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0873555839061737 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[6].display_name | Computer network |
| concepts[7].id | https://openalex.org/C90509273 |
| concepts[7].level | 2 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[7].display_name | Robot |
| concepts[8].id | https://openalex.org/C106131492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[8].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/sampling |
| keywords[0].score | 0.6461682915687561 |
| keywords[0].display_name | Sampling (signal processing) |
| keywords[1].id | https://openalex.org/keywords/path |
| keywords[1].score | 0.5844562649726868 |
| keywords[1].display_name | Path (computing) |
| keywords[2].id | https://openalex.org/keywords/motion-planning |
| keywords[2].score | 0.4889315664768219 |
| keywords[2].display_name | Motion planning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48342597484588623 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.21358022093772888 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.15197890996932983 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/computer-network |
| keywords[6].score | 0.0873555839061737 |
| keywords[6].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.05480 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.05480 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.05480 |
| locations[1].id | doi:10.48550/arxiv.2403.05480 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.05480 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083678783 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4934-5184 |
| authorships[0].author.display_name | Artur Wolek |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wolek, Artur |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5012771152 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Isaac E. Weintraub |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weintraub, Isaac E. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5059633067 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7661-5752 |
| authorships[2].author.display_name | Alexander Von Moll |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Von Moll, Alexander |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5029454978 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7065-7337 |
| authorships[3].author.display_name | David W. Casbeer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Casbeer, David |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086282802 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0881-5672 |
| authorships[4].author.display_name | Satyanarayana G. Manyam |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Manyam, Satyanarayana G. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.05480 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Sampling-Based Risk-Aware Path Planning Around Dynamic Engagement Zones |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10586 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Robotic Path Planning Algorithms |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2359600231, https://openalex.org/W2380019117, https://openalex.org/W3138952546, https://openalex.org/W1987886368, https://openalex.org/W1660309994, https://openalex.org/W2369187583, https://openalex.org/W3197207153, https://openalex.org/W3154539612 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.05480 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.05480 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.05480 |
| primary_location.id | pmh:oai:arXiv.org:2403.05480 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.05480 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.05480 |
| publication_date | 2024-03-08 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56, 62, 67, 72, 76, 84, 120, 132, 143, 161 |
| abstract_inverted_index.EZ | 149 |
| abstract_inverted_index.as | 28, 160, 169 |
| abstract_inverted_index.be | 113 |
| abstract_inverted_index.in | 75, 80, 108, 119, 128 |
| abstract_inverted_index.is | 126, 140, 178 |
| abstract_inverted_index.of | 14, 31, 83, 87, 131, 163, 166 |
| abstract_inverted_index.to | 16, 41, 47, 60, 70, 95, 151, 175 |
| abstract_inverted_index.EZs | 92, 167 |
| abstract_inverted_index.The | 90, 138 |
| abstract_inverted_index.and | 8, 44, 156, 168 |
| abstract_inverted_index.are | 23, 39, 93 |
| abstract_inverted_index.can | 112 |
| abstract_inverted_index.for | 2, 66 |
| abstract_inverted_index.its | 100 |
| abstract_inverted_index.the | 12, 29, 81, 96, 104, 109, 129, 153, 164, 170, 176 |
| abstract_inverted_index.This | 53, 124 |
| abstract_inverted_index.Tree | 135 |
| abstract_inverted_index.into | 115 |
| abstract_inverted_index.made | 173 |
| abstract_inverted_index.path | 158 |
| abstract_inverted_index.plan | 65 |
| abstract_inverted_index.rate | 155 |
| abstract_inverted_index.risk | 10 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.than | 50 |
| abstract_inverted_index.that | 147 |
| abstract_inverted_index.they | 25 |
| abstract_inverted_index.time | 172 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.(EZs) | 7 |
| abstract_inverted_index.(x,y) | 110 |
| abstract_inverted_index.Carlo | 145 |
| abstract_inverted_index.Monte | 144 |
| abstract_inverted_index.Thus, | 103 |
| abstract_inverted_index.While | 20 |
| abstract_inverted_index.based | 37 |
| abstract_inverted_index.large | 85 |
| abstract_inverted_index.novel | 57 |
| abstract_inverted_index.often | 45 |
| abstract_inverted_index.paper | 54 |
| abstract_inverted_index.plane | 111 |
| abstract_inverted_index.reach | 71 |
| abstract_inverted_index.scale | 26 |
| abstract_inverted_index.zones | 6, 33 |
| abstract_inverted_index.(RRT*) | 136 |
| abstract_inverted_index.Dubins | 68 |
| abstract_inverted_index.Random | 134 |
| abstract_inverted_index.angle. | 102 |
| abstract_inverted_index.flight | 64 |
| abstract_inverted_index.length | 159 |
| abstract_inverted_index.lifted | 121 |
| abstract_inverted_index.local, | 48 |
| abstract_inverted_index.number | 30, 86, 165 |
| abstract_inverted_index.obtain | 17, 61 |
| abstract_inverted_index.paths. | 19 |
| abstract_inverted_index.poorly | 27 |
| abstract_inverted_index.rather | 49 |
| abstract_inverted_index.region | 79 |
| abstract_inverted_index.space. | 123 |
| abstract_inverted_index.static | 117 |
| abstract_inverted_index.zones. | 89 |
| abstract_inverted_index.average | 157 |
| abstract_inverted_index.bounded | 77 |
| abstract_inverted_index.coupled | 94 |
| abstract_inverted_index.desired | 73 |
| abstract_inverted_index.dynamic | 4, 91, 105 |
| abstract_inverted_index.global, | 51 |
| abstract_inverted_index.guesses | 43 |
| abstract_inverted_index.heading | 101 |
| abstract_inverted_index.initial | 42 |
| abstract_inverted_index.insight | 125 |
| abstract_inverted_index.methods | 1, 22 |
| abstract_inverted_index.minima. | 52 |
| abstract_inverted_index.optimal | 18 |
| abstract_inverted_index.planner | 177 |
| abstract_inverted_index.success | 154 |
| abstract_inverted_index.through | 99 |
| abstract_inverted_index.vehicle | 69, 97 |
| abstract_inverted_index.(x,y,ψ) | 122 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.approach | 59 |
| abstract_inverted_index.avoiding | 3 |
| abstract_inverted_index.calculus | 13 |
| abstract_inverted_index.converge | 46 |
| abstract_inverted_index.dynamics | 98 |
| abstract_inverted_index.feasible | 63 |
| abstract_inverted_index.function | 162 |
| abstract_inverted_index.leverage | 11 |
| abstract_inverted_index.location | 74 |
| abstract_inverted_index.presence | 82 |
| abstract_inverted_index.presents | 55 |
| abstract_inverted_index.algorithm | 139 |
| abstract_inverted_index.available | 174 |
| abstract_inverted_index.evaluated | 141 |
| abstract_inverted_index.leveraged | 127 |
| abstract_inverted_index.locations | 150 |
| abstract_inverted_index.obstacles | 107, 118 |
| abstract_inverted_index.operating | 78 |
| abstract_inverted_index.sensitive | 40 |
| abstract_inverted_index.algorithm. | 137 |
| abstract_inverted_index.engagement | 5, 32, 88 |
| abstract_inverted_index.experiment | 146 |
| abstract_inverted_index.increased. | 179 |
| abstract_inverted_index.increases. | 34 |
| abstract_inverted_index.minimizing | 9 |
| abstract_inverted_index.randomizes | 148 |
| abstract_inverted_index.strategies | 38 |
| abstract_inverted_index.variations | 15 |
| abstract_inverted_index.computation | 171 |
| abstract_inverted_index.formulation | 130 |
| abstract_inverted_index.transformed | 114 |
| abstract_inverted_index.Furthermore, | 35 |
| abstract_inverted_index.characterize | 152 |
| abstract_inverted_index.deterministic, | 24 |
| abstract_inverted_index.sampling-based | 58 |
| abstract_inverted_index.optimal-control | 36 |
| abstract_inverted_index.two-dimensional | 106 |
| abstract_inverted_index.Rapidly-exploring | 133 |
| abstract_inverted_index.three-dimensional | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |