SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/19475705.2024.2409202
Climate change has substantially increased both the occurrence and intensity of flood events, particularly in the Indian subcontinent, exacerbating threats to human populations and economic infrastructure. The present research employed novel ML models—LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble—developed in the Python environment and leveraged 18 flood-influencing factors to delineate flood-prone areas with precision. A comprehensive flood inventory, obtained from Sentinel-1 Synthetic Aperture Radar (SAR) data using the Google Earth Engine (GEE) platform, provided empirical data for entire model training and validation. Model performance was assessed using precision, recall, F1-score, accuracy, and ROC-AUC metrics. The results highlighted Stacking Ensemble’s superior predictive ability (0.965), followed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR (0.921), and SVM (0.920) respectively, establishing the feasibility of ML applications in disaster management. The maps depicting susceptibility to flooding generated by the current research provide actionable insights for decision-makers, city planners, and authorities responsible for disaster management, guiding infrastructural and community resilience enhancements against flood risks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/19475705.2024.2409202
- https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=true
- OA Status
- gold
- Cited By
- 8
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403459510
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403459510Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/19475705.2024.2409202Digital Object Identifier
- Title
-
SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Krishnagopal Halder, Anitabha Ghosh, Amit Kumar Srivastava, Subodh Chandra Pal, Uday Chatterjee, Dipak Bisai, Frank Ewert, Thomas Gaiser, Abu Reza Md. Towfiqul Islam, Edris Alam, Md Kamrul IslamList of authors in order
- Landing page
-
https://doi.org/10.1080/19475705.2024.2409202Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=trueDirect OA link when available
- Concepts
-
Flood myth, Ensemble learning, Ensemble forecasting, Computer science, Artificial intelligence, Environmental science, Machine learning, Remote sensing, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403459510 |
|---|---|
| doi | https://doi.org/10.1080/19475705.2024.2409202 |
| ids.doi | https://doi.org/10.1080/19475705.2024.2409202 |
| ids.openalex | https://openalex.org/W4403459510 |
| fwci | 4.59027287 |
| type | article |
| title | SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks |
| awards[0].id | https://openalex.org/G8398736519 |
| awards[0].funder_id | https://openalex.org/F4320331156 |
| awards[0].display_name | |
| awards[0].funder_award_id | 5823 |
| awards[0].funder_display_name | King Faisal University |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10930 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Flood Risk Assessment and Management |
| topics[1].id | https://openalex.org/T11483 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9692000150680542 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Tropical and Extratropical Cyclones Research |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9607999920845032 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320320879 |
| funders[0].ror | https://ror.org/018mejw64 |
| funders[0].display_name | Deutsche Forschungsgemeinschaft |
| funders[1].id | https://openalex.org/F4320331156 |
| funders[1].ror | |
| funders[1].display_name | King Faisal University |
| is_xpac | False |
| apc_list.value | 1460 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1790 |
| apc_paid.value | 1460 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1790 |
| concepts[0].id | https://openalex.org/C74256435 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6392389535903931 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[0].display_name | Flood myth |
| concepts[1].id | https://openalex.org/C45942800 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49507370591163635 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[1].display_name | Ensemble learning |
| concepts[2].id | https://openalex.org/C119898033 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45486563444137573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3433888 |
| concepts[2].display_name | Ensemble forecasting |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.435741126537323 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3704202175140381 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3482210040092468 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3369098901748657 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C62649853 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3352345824241638 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[7].display_name | Remote sensing |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.27589210867881775 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C166957645 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[9].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/flood-myth |
| keywords[0].score | 0.6392389535903931 |
| keywords[0].display_name | Flood myth |
| keywords[1].id | https://openalex.org/keywords/ensemble-learning |
| keywords[1].score | 0.49507370591163635 |
| keywords[1].display_name | Ensemble learning |
| keywords[2].id | https://openalex.org/keywords/ensemble-forecasting |
| keywords[2].score | 0.45486563444137573 |
| keywords[2].display_name | Ensemble forecasting |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.435741126537323 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3704202175140381 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.3482210040092468 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.3369098901748657 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/remote-sensing |
| keywords[7].score | 0.3352345824241638 |
| keywords[7].display_name | Remote sensing |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.27589210867881775 |
| keywords[8].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1080/19475705.2024.2409202 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S83752769 |
| locations[0].source.issn | 1947-5705, 1947-5713 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1947-5705 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Geomatics Natural Hazards and Risk |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geomatics, Natural Hazards and Risk |
| locations[0].landing_page_url | https://doi.org/10.1080/19475705.2024.2409202 |
| locations[1].id | pmh:oai:doaj.org/article:e9f40d0299a845b284226173c269655f |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Geomatics, Natural Hazards & Risk, Vol 15, Iss 1 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/e9f40d0299a845b284226173c269655f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5094101587 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Krishnagopal Halder |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I41549804 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Remote Sensing and GIS, Vidyasagar University, Vidyasagar University, Midnapore, West Bengal, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I154851008 |
| authorships[0].affiliations[1].raw_affiliation_string | Centre of Excellence in Disaster Mitigation and Management (CoEDMM), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India |
| authorships[0].institutions[0].id | https://openalex.org/I154851008 |
| authorships[0].institutions[0].ror | https://ror.org/00582g326 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I154851008 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Roorkee |
| authorships[0].institutions[1].id | https://openalex.org/I41549804 |
| authorships[0].institutions[1].ror | https://ror.org/027jsza11 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I41549804 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Vidyasagar University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krishnagopal Halder |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Centre of Excellence in Disaster Mitigation and Management (CoEDMM), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, Department of Remote Sensing and GIS, Vidyasagar University, Vidyasagar University, Midnapore, West Bengal, India |
| authorships[1].author.id | https://openalex.org/A5047695909 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Anitabha Ghosh |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I41549804 |
| authorships[1].affiliations[0].raw_affiliation_string | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India |
| authorships[1].institutions[0].id | https://openalex.org/I41549804 |
| authorships[1].institutions[0].ror | https://ror.org/027jsza11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I41549804 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Vidyasagar University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anitabha Ghosh |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India |
| authorships[2].author.id | https://openalex.org/A5082386818 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8219-4854 |
| authorships[2].author.display_name | Amit Kumar Srivastava |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210113030 |
| authorships[2].affiliations[0].raw_affiliation_string | Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I135140700 |
| authorships[2].affiliations[1].raw_affiliation_string | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210113030 |
| authorships[2].institutions[0].ror | https://ror.org/01ygyzs83 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I315704651, https://openalex.org/I4210113030 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Leibniz Centre for Agricultural Landscape Research |
| authorships[2].institutions[1].id | https://openalex.org/I135140700 |
| authorships[2].institutions[1].ror | https://ror.org/041nas322 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I135140700 |
| authorships[2].institutions[1].country_code | DE |
| authorships[2].institutions[1].display_name | University of Bonn |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amit Kumar Srivastava |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany |
| authorships[3].author.id | https://openalex.org/A5069173284 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0805-8007 |
| authorships[3].author.display_name | Subodh Chandra Pal |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I132359460 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, India |
| authorships[3].institutions[0].id | https://openalex.org/I132359460 |
| authorships[3].institutions[0].ror | https://ror.org/05cyd8v32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I132359460 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Burdwan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Subodh Chandra Pal |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, India |
| authorships[4].author.id | https://openalex.org/A5072696908 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9933-8324 |
| authorships[4].author.display_name | Uday Chatterjee |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I41549804 |
| authorships[4].affiliations[0].raw_affiliation_string | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I145894827 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Geography, Bhatter College, Kharagpur, West Bengal, India |
| authorships[4].institutions[0].id | https://openalex.org/I145894827 |
| authorships[4].institutions[0].ror | https://ror.org/03w5sq511 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145894827 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Institute of Technology Kharagpur |
| authorships[4].institutions[1].id | https://openalex.org/I41549804 |
| authorships[4].institutions[1].ror | https://ror.org/027jsza11 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I41549804 |
| authorships[4].institutions[1].country_code | IN |
| authorships[4].institutions[1].display_name | Vidyasagar University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Uday Chatterjee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India, Department of Geography, Bhatter College, Kharagpur, West Bengal, India |
| authorships[5].author.id | https://openalex.org/A5068702430 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dipak Bisai |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I41549804 |
| authorships[5].affiliations[0].raw_affiliation_string | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India |
| authorships[5].institutions[0].id | https://openalex.org/I41549804 |
| authorships[5].institutions[0].ror | https://ror.org/027jsza11 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I41549804 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Vidyasagar University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Dipak Bisai |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Coastal Environmental Studies Research Centre, Egra S.S.B. College, (Affiliated to Vidyasagar University), Kharagpur, West Bengal, India |
| authorships[6].author.id | https://openalex.org/A5072022077 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4392-8154 |
| authorships[6].author.display_name | Frank Ewert |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210113030 |
| authorships[6].affiliations[0].raw_affiliation_string | Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I135140700 |
| authorships[6].affiliations[1].raw_affiliation_string | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I4210113030 |
| authorships[6].institutions[0].ror | https://ror.org/01ygyzs83 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I315704651, https://openalex.org/I4210113030 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Leibniz Centre for Agricultural Landscape Research |
| authorships[6].institutions[1].id | https://openalex.org/I135140700 |
| authorships[6].institutions[1].ror | https://ror.org/041nas322 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I135140700 |
| authorships[6].institutions[1].country_code | DE |
| authorships[6].institutions[1].display_name | University of Bonn |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Frank Ewert |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany |
| authorships[7].author.id | https://openalex.org/A5069966398 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5820-2364 |
| authorships[7].author.display_name | Thomas Gaiser |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I135140700 |
| authorships[7].affiliations[0].raw_affiliation_string | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I135140700 |
| authorships[7].institutions[0].ror | https://ror.org/041nas322 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I135140700 |
| authorships[7].institutions[0].country_code | DE |
| authorships[7].institutions[0].display_name | University of Bonn |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Thomas Gaiser |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany |
| authorships[8].author.id | https://openalex.org/A5038855458 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5779-1382 |
| authorships[8].author.display_name | Abu Reza Md. Towfiqul Islam |
| authorships[8].countries | BD |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I168889406 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I200606013 |
| authorships[8].affiliations[1].raw_affiliation_string | Department of Development Studies, Daffodil International University, Dhaka, Bangladesh |
| authorships[8].institutions[0].id | https://openalex.org/I168889406 |
| authorships[8].institutions[0].ror | https://ror.org/00hhr3x36 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I168889406 |
| authorships[8].institutions[0].country_code | BD |
| authorships[8].institutions[0].display_name | Begum Rokeya University |
| authorships[8].institutions[1].id | https://openalex.org/I200606013 |
| authorships[8].institutions[1].ror | https://ror.org/052t4a858 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I200606013 |
| authorships[8].institutions[1].country_code | BD |
| authorships[8].institutions[1].display_name | Daffodil International University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Abu Reza Md. Towfiqul Islam |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Development Studies, Daffodil International University, Dhaka, Bangladesh, Department of Disaster Management, Begum Rokeya University, Rangpur, Bangladesh |
| authorships[9].author.id | https://openalex.org/A5052733333 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7303-9625 |
| authorships[9].author.display_name | Edris Alam |
| authorships[9].countries | BD |
| authorships[9].affiliations[0].raw_affiliation_string | Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I894293524 |
| authorships[9].affiliations[1].raw_affiliation_string | Department of Geography and Environmental Studies, University of Chittagong, Chittagong, Bangladesh |
| authorships[9].institutions[0].id | https://openalex.org/I894293524 |
| authorships[9].institutions[0].ror | https://ror.org/01173vs27 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I894293524 |
| authorships[9].institutions[0].country_code | BD |
| authorships[9].institutions[0].display_name | University of Chittagong |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Edris Alam |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Geography and Environmental Studies, University of Chittagong, Chittagong, Bangladesh, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates |
| authorships[10].author.id | https://openalex.org/A5041859607 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-8329-5366 |
| authorships[10].author.display_name | Md Kamrul Islam |
| authorships[10].countries | SA |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4626487 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering College of Engineering, King Faisal University, Saudi Arabia |
| authorships[10].institutions[0].id | https://openalex.org/I4626487 |
| authorships[10].institutions[0].ror | https://ror.org/00dn43547 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I4626487 |
| authorships[10].institutions[0].country_code | SA |
| authorships[10].institutions[0].display_name | King Faisal University |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Md Kamrul Islam |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Civil and Environmental Engineering College of Engineering, King Faisal University, Saudi Arabia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SAR-driven flood inventory and multi-factor ensemble susceptibility modelling using machine learning frameworks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10930 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Flood Risk Assessment and Management |
| related_works | https://openalex.org/W4376643315, https://openalex.org/W4324137541, https://openalex.org/W2794896638, https://openalex.org/W2900445707, https://openalex.org/W2891633941, https://openalex.org/W4285741730, https://openalex.org/W1191482210, https://openalex.org/W4285046548, https://openalex.org/W3202800081, https://openalex.org/W4210302090 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/19475705.2024.2409202 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S83752769 |
| best_oa_location.source.issn | 1947-5705, 1947-5713 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1947-5705 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Geomatics Natural Hazards and Risk |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geomatics, Natural Hazards and Risk |
| best_oa_location.landing_page_url | https://doi.org/10.1080/19475705.2024.2409202 |
| primary_location.id | doi:10.1080/19475705.2024.2409202 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S83752769 |
| primary_location.source.issn | 1947-5705, 1947-5713 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1947-5705 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Geomatics Natural Hazards and Risk |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/19475705.2024.2409202?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geomatics, Natural Hazards and Risk |
| primary_location.landing_page_url | https://doi.org/10.1080/19475705.2024.2409202 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3165242962, https://openalex.org/W4392203608, https://openalex.org/W4391753792, https://openalex.org/W4220678557, https://openalex.org/W4293226370, https://openalex.org/W4200366832, https://openalex.org/W4400166538, https://openalex.org/W2969688345, https://openalex.org/W3158065874, https://openalex.org/W4389828445, https://openalex.org/W4395029371, https://openalex.org/W4400607210, https://openalex.org/W2981581709, https://openalex.org/W3006583570, https://openalex.org/W4322724165, https://openalex.org/W4281679379, https://openalex.org/W4298139819, https://openalex.org/W4383819855, https://openalex.org/W4316036148, https://openalex.org/W4392924350, https://openalex.org/W4388825579, https://openalex.org/W4280595610, https://openalex.org/W4392717745, https://openalex.org/W4282833039, https://openalex.org/W4223912231, https://openalex.org/W4365149001, https://openalex.org/W4392285282, https://openalex.org/W3110669030, https://openalex.org/W3131105366, https://openalex.org/W4308105868, https://openalex.org/W4304140007, https://openalex.org/W4382177963, https://openalex.org/W4381952368, https://openalex.org/W4390586757, https://openalex.org/W4390579666, https://openalex.org/W4319324434, https://openalex.org/W4214831197, https://openalex.org/W3032913569, https://openalex.org/W4292335982, https://openalex.org/W2972738434, https://openalex.org/W4298132657, https://openalex.org/W4292362383, https://openalex.org/W4283016790, https://openalex.org/W4391779020, https://openalex.org/W2957135778, https://openalex.org/W4294237312, https://openalex.org/W4289767170, https://openalex.org/W3199704630, https://openalex.org/W4295129548, https://openalex.org/W4367298578, https://openalex.org/W4310071918, https://openalex.org/W4390828540, https://openalex.org/W4396773448, https://openalex.org/W4381573497, https://openalex.org/W3122202079, https://openalex.org/W4221125467, https://openalex.org/W4320736288, https://openalex.org/W4377097021, https://openalex.org/W3008855520, https://openalex.org/W4283749726, https://openalex.org/W4388831943, https://openalex.org/W3213396606, https://openalex.org/W4205759756, https://openalex.org/W4395031523, https://openalex.org/W4310500587, https://openalex.org/W4226182805, https://openalex.org/W4280556628, https://openalex.org/W3212177475, https://openalex.org/W4400358275, https://openalex.org/W4313557247, https://openalex.org/W2104316689, https://openalex.org/W4294605691, https://openalex.org/W4308608928, https://openalex.org/W4229020379, https://openalex.org/W4220955126, https://openalex.org/W4205817231, https://openalex.org/W3196492143, https://openalex.org/W4396654760 |
| referenced_works_count | 78 |
| abstract_inverted_index.A | 55 |
| abstract_inverted_index.18 | 46 |
| abstract_inverted_index.LR | 113 |
| abstract_inverted_index.ML | 31, 123 |
| abstract_inverted_index.RF | 111 |
| abstract_inverted_index.by | 135 |
| abstract_inverted_index.in | 14, 40, 125 |
| abstract_inverted_index.of | 10, 122 |
| abstract_inverted_index.to | 20, 49, 132 |
| abstract_inverted_index.DNN | 109 |
| abstract_inverted_index.RF, | 34 |
| abstract_inverted_index.SVM | 116 |
| abstract_inverted_index.The | 26, 95, 128 |
| abstract_inverted_index.and | 8, 23, 37, 44, 81, 92, 115, 146, 154 |
| abstract_inverted_index.by, | 106 |
| abstract_inverted_index.for | 77, 142, 149 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.the | 6, 15, 41, 68, 120, 136 |
| abstract_inverted_index.was | 85 |
| abstract_inverted_index.DNN, | 36 |
| abstract_inverted_index.SVM, | 33 |
| abstract_inverted_index.both | 5 |
| abstract_inverted_index.city | 144 |
| abstract_inverted_index.data | 66, 76 |
| abstract_inverted_index.from | 60 |
| abstract_inverted_index.maps | 129 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.(GEE) | 72 |
| abstract_inverted_index.(SAR) | 65 |
| abstract_inverted_index.Earth | 70 |
| abstract_inverted_index.Model | 83 |
| abstract_inverted_index.Radar | 64 |
| abstract_inverted_index.areas | 52 |
| abstract_inverted_index.flood | 11, 57, 159 |
| abstract_inverted_index.human | 21 |
| abstract_inverted_index.model | 79 |
| abstract_inverted_index.novel | 30 |
| abstract_inverted_index.using | 67, 87 |
| abstract_inverted_index.Engine | 71 |
| abstract_inverted_index.Google | 69 |
| abstract_inverted_index.Indian | 16 |
| abstract_inverted_index.Python | 42 |
| abstract_inverted_index.change | 1 |
| abstract_inverted_index.entire | 78 |
| abstract_inverted_index.risks. | 160 |
| abstract_inverted_index.(0.920) | 117 |
| abstract_inverted_index.Climate | 0 |
| abstract_inverted_index.ROC-AUC | 93 |
| abstract_inverted_index.XGBoost | 107 |
| abstract_inverted_index.ability | 102 |
| abstract_inverted_index.against | 158 |
| abstract_inverted_index.closely | 105 |
| abstract_inverted_index.current | 137 |
| abstract_inverted_index.events, | 12 |
| abstract_inverted_index.factors | 48 |
| abstract_inverted_index.guiding | 152 |
| abstract_inverted_index.present | 27 |
| abstract_inverted_index.provide | 139 |
| abstract_inverted_index.recall, | 89 |
| abstract_inverted_index.results | 96 |
| abstract_inverted_index.threats | 19 |
| abstract_inverted_index.(0.921), | 114 |
| abstract_inverted_index.(0.925), | 112 |
| abstract_inverted_index.(0.929), | 110 |
| abstract_inverted_index.(0.934), | 108 |
| abstract_inverted_index.(0.965), | 103 |
| abstract_inverted_index.Aperture | 63 |
| abstract_inverted_index.Stacking | 38, 98 |
| abstract_inverted_index.XGBoost, | 35 |
| abstract_inverted_index.assessed | 86 |
| abstract_inverted_index.disaster | 126, 150 |
| abstract_inverted_index.economic | 24 |
| abstract_inverted_index.employed | 29 |
| abstract_inverted_index.flooding | 133 |
| abstract_inverted_index.followed | 104 |
| abstract_inverted_index.insights | 141 |
| abstract_inverted_index.metrics. | 94 |
| abstract_inverted_index.obtained | 59 |
| abstract_inverted_index.provided | 74 |
| abstract_inverted_index.research | 28, 138 |
| abstract_inverted_index.superior | 100 |
| abstract_inverted_index.training | 80 |
| abstract_inverted_index.F1-score, | 90 |
| abstract_inverted_index.Synthetic | 62 |
| abstract_inverted_index.accuracy, | 91 |
| abstract_inverted_index.community | 155 |
| abstract_inverted_index.delineate | 50 |
| abstract_inverted_index.depicting | 130 |
| abstract_inverted_index.empirical | 75 |
| abstract_inverted_index.generated | 134 |
| abstract_inverted_index.increased | 4 |
| abstract_inverted_index.intensity | 9 |
| abstract_inverted_index.leveraged | 45 |
| abstract_inverted_index.planners, | 145 |
| abstract_inverted_index.platform, | 73 |
| abstract_inverted_index.Sentinel-1 | 61 |
| abstract_inverted_index.actionable | 140 |
| abstract_inverted_index.inventory, | 58 |
| abstract_inverted_index.occurrence | 7 |
| abstract_inverted_index.precision, | 88 |
| abstract_inverted_index.precision. | 54 |
| abstract_inverted_index.predictive | 101 |
| abstract_inverted_index.resilience | 156 |
| abstract_inverted_index.authorities | 147 |
| abstract_inverted_index.environment | 43 |
| abstract_inverted_index.feasibility | 121 |
| abstract_inverted_index.flood-prone | 51 |
| abstract_inverted_index.highlighted | 97 |
| abstract_inverted_index.management, | 151 |
| abstract_inverted_index.management. | 127 |
| abstract_inverted_index.performance | 84 |
| abstract_inverted_index.populations | 22 |
| abstract_inverted_index.responsible | 148 |
| abstract_inverted_index.validation. | 82 |
| abstract_inverted_index.Ensemble’s | 99 |
| abstract_inverted_index.applications | 124 |
| abstract_inverted_index.enhancements | 157 |
| abstract_inverted_index.establishing | 119 |
| abstract_inverted_index.exacerbating | 18 |
| abstract_inverted_index.models—LR, | 32 |
| abstract_inverted_index.particularly | 13 |
| abstract_inverted_index.comprehensive | 56 |
| abstract_inverted_index.respectively, | 118 |
| abstract_inverted_index.subcontinent, | 17 |
| abstract_inverted_index.substantially | 3 |
| abstract_inverted_index.susceptibility | 131 |
| abstract_inverted_index.infrastructural | 153 |
| abstract_inverted_index.infrastructure. | 25 |
| abstract_inverted_index.decision-makers, | 143 |
| abstract_inverted_index.flood-influencing | 47 |
| abstract_inverted_index.Ensemble—developed | 39 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5082386818, https://openalex.org/A5069173284 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I132359460, https://openalex.org/I135140700, https://openalex.org/I4210113030 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.91494941 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |