SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM Images Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/v14112386
The SARS-CoV-2 virus is responsible for the rapid global spread of the COVID-19 disease. As a result, it is critical to understand and collect primary data on the virus, infection epidemiology, and treatment. Despite the speed with which the virus was detected, studies of its cell biology and architecture at the ultrastructural level are still in their infancy. Therefore, we investigated and analyzed the viral morphometry of SARS-CoV-2 to extract important key points of the virus’s characteristics. Then, we proposed a prediction model to identify the real virus levels based on the optimization of a full recurrent neural network (RNN) using transmission electron microscopy (TEM) images. Consequently, identification of virus levels depends on the size of the morphometry of the area (width, height, circularity, roundness, aspect ratio, and solidity). The results of our model were an error score of training network performance 3.216 × 10−11 at 639 epoch, regression of −1.6 × 10−9, momentum gain (Mu) 1 × 10−9, and gradient value of 9.6852 × 10−8, which represent a network with a high ability to predict virus levels. The fully automated system enables virologists to take a high-accuracy approach to virus diagnosis, prevention of mutations, and life cycle and improvement of diagnostic reagents and drugs, adding a point of view to the advancement of medical virology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/v14112386
- https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245
- OA Status
- gold
- Cited By
- 26
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4307623972
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4307623972Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/v14112386Digital Object Identifier
- Title
-
SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM ImagesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-10-28Full publication date if available
- Authors
-
Bakr Ahmed Taha, Yousif Al Mashhadany, Abdulmajeed Al-Jumaily, Mohd Saiful Dzulkefly Zan, Norhana ArsadList of authors in order
- Landing page
-
https://doi.org/10.3390/v14112386Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245Direct OA link when available
- Concepts
-
Virus, Artificial neural network, Computer science, Virology, Artificial intelligence, Biology, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 11, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4307623972 |
|---|---|
| doi | https://doi.org/10.3390/v14112386 |
| ids.doi | https://doi.org/10.3390/v14112386 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36366485 |
| ids.openalex | https://openalex.org/W4307623972 |
| fwci | 5.07648732 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000086402 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | SARS-CoV-2 |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000086382 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | COVID-19 |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D016571 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Neural Networks, Computer |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D046529 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Microscopy, Electron, Transmission |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000086402 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | SARS-CoV-2 |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000086382 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | COVID-19 |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D046529 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Microscopy, Electron, Transmission |
| type | article |
| title | SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM Images |
| biblio.issue | 11 |
| biblio.volume | 14 |
| biblio.last_page | 2386 |
| biblio.first_page | 2386 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9919999837875366 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2815 |
| apc_paid.value | 2600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2815 |
| concepts[0].id | https://openalex.org/C2522874641 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7270894050598145 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q808 |
| concepts[0].display_name | Virus |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6156234741210938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4322276711463928 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C159047783 |
| concepts[3].level | 1 |
| concepts[3].score | 0.42193466424942017 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[3].display_name | Virology |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3790544271469116 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.35652127861976624 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.32456421852111816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/virus |
| keywords[0].score | 0.7270894050598145 |
| keywords[0].display_name | Virus |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.6156234741210938 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4322276711463928 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/virology |
| keywords[3].score | 0.42193466424942017 |
| keywords[3].display_name | Virology |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3790544271469116 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.35652127861976624 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.32456421852111816 |
| keywords[6].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.3390/v14112386 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S55776271 |
| locations[0].source.issn | 1999-4915 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4915 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Viruses |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Viruses |
| locations[0].landing_page_url | https://doi.org/10.3390/v14112386 |
| locations[1].id | pmid:36366485 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Viruses |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36366485 |
| locations[2].id | pmh:oai:doaj.org/article:35474ecbb261451bba868b415cead741 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Viruses, Vol 14, Iss 11, p 2386 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/35474ecbb261451bba868b415cead741 |
| locations[3].id | pmh:oai:mdpi.com:/1999-4915/14/11/2386/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Viruses; Volume 14; Issue 11; Pages: 2386 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/v14112386 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9698148 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Viruses |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9698148 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5070183609 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8922-3993 |
| authorships[0].author.display_name | Bakr Ahmed Taha |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I885383172 |
| authorships[0].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | National University of Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bakr Ahmed Taha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[1].author.id | https://openalex.org/A5074920599 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3943-8395 |
| authorships[1].author.display_name | Yousif Al Mashhadany |
| authorships[1].countries | IQ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I27768575 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq |
| authorships[1].institutions[0].id | https://openalex.org/I27768575 |
| authorships[1].institutions[0].ror | https://ror.org/055a6gk50 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I27768575 |
| authorships[1].institutions[0].country_code | IQ |
| authorships[1].institutions[0].display_name | University of Anbar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yousif Al Mashhadany |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq |
| authorships[2].author.id | https://openalex.org/A5017939427 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7777-6075 |
| authorships[2].author.display_name | Abdulmajeed Al-Jumaily |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130343225 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I130343225 |
| authorships[2].institutions[0].ror | https://ror.org/02e91jd64 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130343225 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | Universiti Putra Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abdulmajeed H. J. Al-Jumaily |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia |
| authorships[3].author.id | https://openalex.org/A5056340868 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1440-5434 |
| authorships[3].author.display_name | Mohd Saiful Dzulkefly Zan |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I885383172 |
| authorships[3].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | National University of Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mohd Saiful Dzulkefly Bin Zan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[4].author.id | https://openalex.org/A5080326883 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4543-8383 |
| authorships[4].author.display_name | Norhana Arsad |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I885383172 |
| authorships[4].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | National University of Malaysia |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Norhana Arsad |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SARS-CoV-2 Morphometry Analysis and Prediction of Real Virus Levels Based on Full Recurrent Neural Network Using TEM Images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W2007075040, https://openalex.org/W1489156230, https://openalex.org/W2805384219, https://openalex.org/W2126232866, https://openalex.org/W2188759708, https://openalex.org/W2097433578, https://openalex.org/W4386371748, https://openalex.org/W2147145791, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/v14112386 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S55776271 |
| best_oa_location.source.issn | 1999-4915 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4915 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Viruses |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Viruses |
| best_oa_location.landing_page_url | https://doi.org/10.3390/v14112386 |
| primary_location.id | doi:10.3390/v14112386 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S55776271 |
| primary_location.source.issn | 1999-4915 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4915 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Viruses |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4915/14/11/2386/pdf?version=1667195245 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Viruses |
| primary_location.landing_page_url | https://doi.org/10.3390/v14112386 |
| publication_date | 2022-10-28 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2909194930, https://openalex.org/W3012944241, https://openalex.org/W3176668337, https://openalex.org/W4293842843, https://openalex.org/W3016053819, https://openalex.org/W3130848108, https://openalex.org/W3174538897, https://openalex.org/W4200510333, https://openalex.org/W3029179736, https://openalex.org/W2058905018, https://openalex.org/W3020838251, https://openalex.org/W3007878828, https://openalex.org/W3021161367, https://openalex.org/W3010350910, https://openalex.org/W4225128909, https://openalex.org/W3130915273, https://openalex.org/W3017855299, https://openalex.org/W3205027048, https://openalex.org/W6781889298, https://openalex.org/W2963340466, https://openalex.org/W3184028340, https://openalex.org/W3043179072, https://openalex.org/W3122616078, https://openalex.org/W2171865010, https://openalex.org/W2739917809, https://openalex.org/W2757422082, https://openalex.org/W2900936384, https://openalex.org/W2797749376, https://openalex.org/W2162287937, https://openalex.org/W3035740374, https://openalex.org/W3013098034, https://openalex.org/W2954174912, https://openalex.org/W3158811354, https://openalex.org/W4301373298, https://openalex.org/W2949257317, https://openalex.org/W4288047513, https://openalex.org/W4200376662, https://openalex.org/W3191514888, https://openalex.org/W3132941258, https://openalex.org/W6774390924, https://openalex.org/W3094118223, https://openalex.org/W3176966826, https://openalex.org/W2767410506, https://openalex.org/W2000971069, https://openalex.org/W2768412660, https://openalex.org/W4205686602, https://openalex.org/W4224569194, https://openalex.org/W4214621800, https://openalex.org/W2149723649, https://openalex.org/W2113442785, https://openalex.org/W2088932912, https://openalex.org/W2752565018, https://openalex.org/W2910465307, https://openalex.org/W3126667819, https://openalex.org/W3001897055, https://openalex.org/W3036391214, https://openalex.org/W3013093478, https://openalex.org/W3046072788, https://openalex.org/W1597037822, https://openalex.org/W3011701533, https://openalex.org/W3010441732, https://openalex.org/W3118940832, https://openalex.org/W4206689658, https://openalex.org/W2799093543, https://openalex.org/W3040837244, https://openalex.org/W3082156925, https://openalex.org/W3010421324, https://openalex.org/W3137540208, https://openalex.org/W3048886990 |
| referenced_works_count | 69 |
| abstract_inverted_index.1 | 156 |
| abstract_inverted_index.a | 15, 80, 94, 168, 171, 186, 206 |
| abstract_inverted_index.As | 14 |
| abstract_inverted_index.an | 135 |
| abstract_inverted_index.at | 49, 145 |
| abstract_inverted_index.in | 55 |
| abstract_inverted_index.is | 3, 18 |
| abstract_inverted_index.it | 17 |
| abstract_inverted_index.of | 10, 43, 66, 73, 93, 108, 115, 118, 131, 138, 149, 162, 193, 200, 208, 213 |
| abstract_inverted_index.on | 26, 90, 112 |
| abstract_inverted_index.to | 20, 68, 83, 174, 184, 189, 210 |
| abstract_inverted_index.we | 59, 78 |
| abstract_inverted_index.× | 143, 151, 157, 164 |
| abstract_inverted_index.639 | 146 |
| abstract_inverted_index.The | 0, 129, 178 |
| abstract_inverted_index.and | 22, 31, 47, 61, 127, 159, 195, 198, 203 |
| abstract_inverted_index.are | 53 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.its | 44 |
| abstract_inverted_index.key | 71 |
| abstract_inverted_index.our | 132 |
| abstract_inverted_index.the | 6, 11, 27, 34, 38, 50, 63, 74, 85, 91, 113, 116, 119, 211 |
| abstract_inverted_index.was | 40 |
| abstract_inverted_index.(Mu) | 155 |
| abstract_inverted_index.area | 120 |
| abstract_inverted_index.cell | 45 |
| abstract_inverted_index.data | 25 |
| abstract_inverted_index.full | 95 |
| abstract_inverted_index.gain | 154 |
| abstract_inverted_index.high | 172 |
| abstract_inverted_index.life | 196 |
| abstract_inverted_index.real | 86 |
| abstract_inverted_index.size | 114 |
| abstract_inverted_index.take | 185 |
| abstract_inverted_index.view | 209 |
| abstract_inverted_index.were | 134 |
| abstract_inverted_index.with | 36, 170 |
| abstract_inverted_index.(RNN) | 99 |
| abstract_inverted_index.(TEM) | 104 |
| abstract_inverted_index.3.216 | 142 |
| abstract_inverted_index.Then, | 77 |
| abstract_inverted_index.based | 89 |
| abstract_inverted_index.cycle | 197 |
| abstract_inverted_index.error | 136 |
| abstract_inverted_index.fully | 179 |
| abstract_inverted_index.level | 52 |
| abstract_inverted_index.model | 82, 133 |
| abstract_inverted_index.point | 207 |
| abstract_inverted_index.rapid | 7 |
| abstract_inverted_index.score | 137 |
| abstract_inverted_index.speed | 35 |
| abstract_inverted_index.still | 54 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.using | 100 |
| abstract_inverted_index.value | 161 |
| abstract_inverted_index.viral | 64 |
| abstract_inverted_index.virus | 2, 39, 87, 109, 176, 190 |
| abstract_inverted_index.which | 37, 166 |
| abstract_inverted_index.9.6852 | 163 |
| abstract_inverted_index.adding | 205 |
| abstract_inverted_index.aspect | 125 |
| abstract_inverted_index.drugs, | 204 |
| abstract_inverted_index.epoch, | 147 |
| abstract_inverted_index.global | 8 |
| abstract_inverted_index.levels | 88, 110 |
| abstract_inverted_index.neural | 97 |
| abstract_inverted_index.points | 72 |
| abstract_inverted_index.ratio, | 126 |
| abstract_inverted_index.spread | 9 |
| abstract_inverted_index.system | 181 |
| abstract_inverted_index.virus, | 28 |
| abstract_inverted_index.−1.6 | 150 |
| abstract_inverted_index.(width, | 121 |
| abstract_inverted_index.10−11 | 144 |
| abstract_inverted_index.10−8, | 165 |
| abstract_inverted_index.10−9, | 152, 158 |
| abstract_inverted_index.Despite | 33 |
| abstract_inverted_index.ability | 173 |
| abstract_inverted_index.biology | 46 |
| abstract_inverted_index.collect | 23 |
| abstract_inverted_index.depends | 111 |
| abstract_inverted_index.enables | 182 |
| abstract_inverted_index.extract | 69 |
| abstract_inverted_index.height, | 122 |
| abstract_inverted_index.images. | 105 |
| abstract_inverted_index.levels. | 177 |
| abstract_inverted_index.medical | 214 |
| abstract_inverted_index.network | 98, 140, 169 |
| abstract_inverted_index.predict | 175 |
| abstract_inverted_index.primary | 24 |
| abstract_inverted_index.result, | 16 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.studies | 42 |
| abstract_inverted_index.COVID-19 | 12 |
| abstract_inverted_index.analyzed | 62 |
| abstract_inverted_index.approach | 188 |
| abstract_inverted_index.critical | 19 |
| abstract_inverted_index.disease. | 13 |
| abstract_inverted_index.electron | 102 |
| abstract_inverted_index.gradient | 160 |
| abstract_inverted_index.identify | 84 |
| abstract_inverted_index.infancy. | 57 |
| abstract_inverted_index.momentum | 153 |
| abstract_inverted_index.proposed | 79 |
| abstract_inverted_index.reagents | 202 |
| abstract_inverted_index.training | 139 |
| abstract_inverted_index.automated | 180 |
| abstract_inverted_index.detected, | 41 |
| abstract_inverted_index.important | 70 |
| abstract_inverted_index.infection | 29 |
| abstract_inverted_index.recurrent | 96 |
| abstract_inverted_index.represent | 167 |
| abstract_inverted_index.virology. | 215 |
| abstract_inverted_index.virus’s | 75 |
| abstract_inverted_index.SARS-CoV-2 | 1, 67 |
| abstract_inverted_index.Therefore, | 58 |
| abstract_inverted_index.diagnosis, | 191 |
| abstract_inverted_index.diagnostic | 201 |
| abstract_inverted_index.microscopy | 103 |
| abstract_inverted_index.mutations, | 194 |
| abstract_inverted_index.prediction | 81 |
| abstract_inverted_index.prevention | 192 |
| abstract_inverted_index.regression | 148 |
| abstract_inverted_index.roundness, | 124 |
| abstract_inverted_index.solidity). | 128 |
| abstract_inverted_index.treatment. | 32 |
| abstract_inverted_index.understand | 21 |
| abstract_inverted_index.advancement | 212 |
| abstract_inverted_index.improvement | 199 |
| abstract_inverted_index.morphometry | 65, 117 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.responsible | 4 |
| abstract_inverted_index.virologists | 183 |
| abstract_inverted_index.architecture | 48 |
| abstract_inverted_index.circularity, | 123 |
| abstract_inverted_index.investigated | 60 |
| abstract_inverted_index.optimization | 92 |
| abstract_inverted_index.transmission | 101 |
| abstract_inverted_index.Consequently, | 106 |
| abstract_inverted_index.epidemiology, | 30 |
| abstract_inverted_index.high-accuracy | 187 |
| abstract_inverted_index.identification | 107 |
| abstract_inverted_index.ultrastructural | 51 |
| abstract_inverted_index.characteristics. | 76 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5080326883 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I885383172 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile.value | 0.94343257 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |