Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.13952
Demand for streaming services, including satellite, continues to exhibit unprecedented growth. Internet Service Providers find themselves at the crossroads of technological advancements and rising customer expectations. To stay relevant and competitive, these ISPs must ensure their networks deliver optimal video streaming quality, a key determinant of user satisfaction. Towards this end, it is important to have accurate Quality of Experience prediction models in place. However, achieving robust performance by these models requires extensive data sets labeled by subjective opinion scores on videos impaired by diverse playback disruptions. To bridge this data gap, we introduce the LIVE-Viasat Real-World Satellite QoE Database. This database consists of 179 videos recorded from real-world streaming services affected by various authentic distortion patterns. We also conducted a comprehensive subjective study involving 54 participants, who contributed both continuous-time opinion scores and endpoint (retrospective) QoE scores. Our analysis sheds light on various determinants influencing subjective QoE, such as stall events, spatial resolutions, bitrate, and certain network parameters. We demonstrate the usefulness of this unique new resource by evaluating the efficacy of prevalent QoE-prediction models on it. We also created a new model that maps the network parameters to predicted human perception scores, which can be used by ISPs to optimize the video streaming quality of their networks. Our proposed model, which we call SatQA, is able to accurately predict QoE using only network parameters, without any access to pixel data or video-specific metadata, estimated by Spearman's Rank Order Correlation Coefficient (SROCC), Pearson Linear Correlation Coefficient (PLCC), and Root Mean Squared Error (RMSE), indicating high accuracy and reliability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.13952
- https://arxiv.org/pdf/2410.13952
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403995411
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403995411Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.13952Digital Object Identifier
- Title
-
Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-17Full publication date if available
- Authors
-
Bowen Chen, Zaixi Shang, Jae Chung, David Lerner, Werner Robitza, Rakesh Rao Ramachandra Rao, Alexander Raake, Alan C. BovikList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.13952Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.13952Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.13952Direct OA link when available
- Concepts
-
Computer science, Streaming data, Satellite, Quality of experience, Video streaming, Real-time computing, Data mining, Computer network, Quality of service, Engineering, Aerospace engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403995411 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.13952 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.13952 |
| ids.openalex | https://openalex.org/W4403995411 |
| fwci | |
| type | preprint |
| title | Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11165 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9760000109672546 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Video Quality Assessment |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7526943683624268 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777611316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5808940529823303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q39045282 |
| concepts[1].display_name | Streaming data |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5130254626274109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C2779333187 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4920884966850281 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3132648 |
| concepts[3].display_name | Quality of experience |
| concepts[4].id | https://openalex.org/C2986160907 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43952110409736633 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q220499 |
| concepts[4].display_name | Video streaming |
| concepts[5].id | https://openalex.org/C79403827 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3590996265411377 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[5].display_name | Real-time computing |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2725664973258972 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C31258907 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2419956624507904 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[7].display_name | Computer network |
| concepts[8].id | https://openalex.org/C5119721 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09474873542785645 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[8].display_name | Quality of service |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07010546326637268 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C146978453 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[10].display_name | Aerospace engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7526943683624268 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/streaming-data |
| keywords[1].score | 0.5808940529823303 |
| keywords[1].display_name | Streaming data |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.5130254626274109 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/quality-of-experience |
| keywords[3].score | 0.4920884966850281 |
| keywords[3].display_name | Quality of experience |
| keywords[4].id | https://openalex.org/keywords/video-streaming |
| keywords[4].score | 0.43952110409736633 |
| keywords[4].display_name | Video streaming |
| keywords[5].id | https://openalex.org/keywords/real-time-computing |
| keywords[5].score | 0.3590996265411377 |
| keywords[5].display_name | Real-time computing |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.2725664973258972 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/computer-network |
| keywords[7].score | 0.2419956624507904 |
| keywords[7].display_name | Computer network |
| keywords[8].id | https://openalex.org/keywords/quality-of-service |
| keywords[8].score | 0.09474873542785645 |
| keywords[8].display_name | Quality of service |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.07010546326637268 |
| keywords[9].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.13952 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.13952 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.13952 |
| locations[1].id | doi:10.48550/arxiv.2410.13952 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.13952 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100675175 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9402-6679 |
| authorships[0].author.display_name | Bowen Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Bowen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5015745910 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4264-3130 |
| authorships[1].author.display_name | Zaixi Shang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shang, Zaixi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018273527 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-8059-012X |
| authorships[2].author.display_name | Jae Chung |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chung, Jae Won |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5092728744 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-3076-534X |
| authorships[3].author.display_name | David Lerner |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lerner, David |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046079772 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3698-9776 |
| authorships[4].author.display_name | Werner Robitza |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robitza, Werner |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5057002019 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7069-1543 |
| authorships[5].author.display_name | Rakesh Rao Ramachandra Rao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rao, Rakesh Rao Ramachandra |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5008559961 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9357-1763 |
| authorships[6].author.display_name | Alexander Raake |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Raake, Alexander |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5075463806 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6067-710X |
| authorships[7].author.display_name | Alan C. Bovik |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Bovik, Alan C. |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.13952 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Satellite Streaming Video QoE Prediction: A Real-World Subjective Database and Network-Level Prediction Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11165 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9760000109672546 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Video Quality Assessment |
| related_works | https://openalex.org/W2324542997, https://openalex.org/W3215753686, https://openalex.org/W3116791087, https://openalex.org/W2750774494, https://openalex.org/W2127587205, https://openalex.org/W2101347143, https://openalex.org/W1999662728, https://openalex.org/W2070888931, https://openalex.org/W2011059428, https://openalex.org/W2960886762 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.13952 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.13952 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.13952 |
| primary_location.id | pmh:oai:arXiv.org:2410.13952 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.13952 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.13952 |
| publication_date | 2024-10-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 120, 181 |
| abstract_inverted_index.54 | 125 |
| abstract_inverted_index.To | 26, 87 |
| abstract_inverted_index.We | 117, 159, 178 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.at | 16 |
| abstract_inverted_index.be | 196 |
| abstract_inverted_index.by | 68, 76, 83, 112, 168, 198, 236 |
| abstract_inverted_index.in | 62 |
| abstract_inverted_index.is | 52, 216 |
| abstract_inverted_index.it | 51 |
| abstract_inverted_index.of | 19, 45, 58, 103, 163, 172, 206 |
| abstract_inverted_index.on | 80, 142, 176 |
| abstract_inverted_index.or | 232 |
| abstract_inverted_index.to | 7, 54, 189, 200, 218, 229 |
| abstract_inverted_index.we | 92, 213 |
| abstract_inverted_index.179 | 104 |
| abstract_inverted_index.Our | 138, 209 |
| abstract_inverted_index.QoE | 98, 136, 221 |
| abstract_inverted_index.and | 22, 29, 133, 155, 248, 257 |
| abstract_inverted_index.any | 227 |
| abstract_inverted_index.can | 195 |
| abstract_inverted_index.for | 1 |
| abstract_inverted_index.it. | 177 |
| abstract_inverted_index.key | 43 |
| abstract_inverted_index.new | 166, 182 |
| abstract_inverted_index.the | 17, 94, 161, 170, 186, 202 |
| abstract_inverted_index.who | 127 |
| abstract_inverted_index.ISPs | 32, 199 |
| abstract_inverted_index.Mean | 250 |
| abstract_inverted_index.QoE, | 147 |
| abstract_inverted_index.Rank | 238 |
| abstract_inverted_index.Root | 249 |
| abstract_inverted_index.This | 100 |
| abstract_inverted_index.able | 217 |
| abstract_inverted_index.also | 118, 179 |
| abstract_inverted_index.both | 129 |
| abstract_inverted_index.call | 214 |
| abstract_inverted_index.data | 73, 90, 231 |
| abstract_inverted_index.end, | 50 |
| abstract_inverted_index.find | 14 |
| abstract_inverted_index.from | 107 |
| abstract_inverted_index.gap, | 91 |
| abstract_inverted_index.have | 55 |
| abstract_inverted_index.high | 255 |
| abstract_inverted_index.maps | 185 |
| abstract_inverted_index.must | 33 |
| abstract_inverted_index.only | 223 |
| abstract_inverted_index.sets | 74 |
| abstract_inverted_index.stay | 27 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.that | 184 |
| abstract_inverted_index.this | 49, 89, 164 |
| abstract_inverted_index.used | 197 |
| abstract_inverted_index.user | 46 |
| abstract_inverted_index.Error | 252 |
| abstract_inverted_index.Order | 239 |
| abstract_inverted_index.human | 191 |
| abstract_inverted_index.light | 141 |
| abstract_inverted_index.model | 183 |
| abstract_inverted_index.pixel | 230 |
| abstract_inverted_index.sheds | 140 |
| abstract_inverted_index.stall | 150 |
| abstract_inverted_index.study | 123 |
| abstract_inverted_index.their | 35, 207 |
| abstract_inverted_index.these | 31, 69 |
| abstract_inverted_index.using | 222 |
| abstract_inverted_index.video | 39, 203 |
| abstract_inverted_index.which | 194, 212 |
| abstract_inverted_index.Demand | 0 |
| abstract_inverted_index.Linear | 244 |
| abstract_inverted_index.SatQA, | 215 |
| abstract_inverted_index.access | 228 |
| abstract_inverted_index.bridge | 88 |
| abstract_inverted_index.ensure | 34 |
| abstract_inverted_index.model, | 211 |
| abstract_inverted_index.models | 61, 70, 175 |
| abstract_inverted_index.place. | 63 |
| abstract_inverted_index.rising | 23 |
| abstract_inverted_index.robust | 66 |
| abstract_inverted_index.scores | 79, 132 |
| abstract_inverted_index.unique | 165 |
| abstract_inverted_index.videos | 81, 105 |
| abstract_inverted_index.(PLCC), | 247 |
| abstract_inverted_index.(RMSE), | 253 |
| abstract_inverted_index.Pearson | 243 |
| abstract_inverted_index.Quality | 57 |
| abstract_inverted_index.Service | 12 |
| abstract_inverted_index.Squared | 251 |
| abstract_inverted_index.Towards | 48 |
| abstract_inverted_index.certain | 156 |
| abstract_inverted_index.created | 180 |
| abstract_inverted_index.deliver | 37 |
| abstract_inverted_index.diverse | 84 |
| abstract_inverted_index.events, | 151 |
| abstract_inverted_index.exhibit | 8 |
| abstract_inverted_index.growth. | 10 |
| abstract_inverted_index.labeled | 75 |
| abstract_inverted_index.network | 157, 187, 224 |
| abstract_inverted_index.opinion | 78, 131 |
| abstract_inverted_index.optimal | 38 |
| abstract_inverted_index.predict | 220 |
| abstract_inverted_index.quality | 205 |
| abstract_inverted_index.scores, | 193 |
| abstract_inverted_index.scores. | 137 |
| abstract_inverted_index.spatial | 152 |
| abstract_inverted_index.various | 113, 143 |
| abstract_inverted_index.without | 226 |
| abstract_inverted_index.(SROCC), | 242 |
| abstract_inverted_index.However, | 64 |
| abstract_inverted_index.Internet | 11 |
| abstract_inverted_index.accuracy | 256 |
| abstract_inverted_index.accurate | 56 |
| abstract_inverted_index.affected | 111 |
| abstract_inverted_index.analysis | 139 |
| abstract_inverted_index.bitrate, | 154 |
| abstract_inverted_index.consists | 102 |
| abstract_inverted_index.customer | 24 |
| abstract_inverted_index.database | 101 |
| abstract_inverted_index.efficacy | 171 |
| abstract_inverted_index.endpoint | 134 |
| abstract_inverted_index.impaired | 82 |
| abstract_inverted_index.networks | 36 |
| abstract_inverted_index.optimize | 201 |
| abstract_inverted_index.playback | 85 |
| abstract_inverted_index.proposed | 210 |
| abstract_inverted_index.quality, | 41 |
| abstract_inverted_index.recorded | 106 |
| abstract_inverted_index.relevant | 28 |
| abstract_inverted_index.requires | 71 |
| abstract_inverted_index.resource | 167 |
| abstract_inverted_index.services | 110 |
| abstract_inverted_index.Database. | 99 |
| abstract_inverted_index.Providers | 13 |
| abstract_inverted_index.Satellite | 97 |
| abstract_inverted_index.achieving | 65 |
| abstract_inverted_index.authentic | 114 |
| abstract_inverted_index.conducted | 119 |
| abstract_inverted_index.continues | 6 |
| abstract_inverted_index.estimated | 235 |
| abstract_inverted_index.extensive | 72 |
| abstract_inverted_index.important | 53 |
| abstract_inverted_index.including | 4 |
| abstract_inverted_index.introduce | 93 |
| abstract_inverted_index.involving | 124 |
| abstract_inverted_index.metadata, | 234 |
| abstract_inverted_index.networks. | 208 |
| abstract_inverted_index.patterns. | 116 |
| abstract_inverted_index.predicted | 190 |
| abstract_inverted_index.prevalent | 173 |
| abstract_inverted_index.services, | 3 |
| abstract_inverted_index.streaming | 2, 40, 109, 204 |
| abstract_inverted_index.Experience | 59 |
| abstract_inverted_index.Real-World | 96 |
| abstract_inverted_index.Spearman's | 237 |
| abstract_inverted_index.accurately | 219 |
| abstract_inverted_index.crossroads | 18 |
| abstract_inverted_index.distortion | 115 |
| abstract_inverted_index.evaluating | 169 |
| abstract_inverted_index.indicating | 254 |
| abstract_inverted_index.parameters | 188 |
| abstract_inverted_index.perception | 192 |
| abstract_inverted_index.prediction | 60 |
| abstract_inverted_index.real-world | 108 |
| abstract_inverted_index.satellite, | 5 |
| abstract_inverted_index.subjective | 77, 122, 146 |
| abstract_inverted_index.themselves | 15 |
| abstract_inverted_index.usefulness | 162 |
| abstract_inverted_index.Coefficient | 241, 246 |
| abstract_inverted_index.Correlation | 240, 245 |
| abstract_inverted_index.LIVE-Viasat | 95 |
| abstract_inverted_index.contributed | 128 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.determinant | 44 |
| abstract_inverted_index.influencing | 145 |
| abstract_inverted_index.parameters, | 225 |
| abstract_inverted_index.parameters. | 158 |
| abstract_inverted_index.performance | 67 |
| abstract_inverted_index.advancements | 21 |
| abstract_inverted_index.competitive, | 30 |
| abstract_inverted_index.determinants | 144 |
| abstract_inverted_index.disruptions. | 86 |
| abstract_inverted_index.reliability. | 258 |
| abstract_inverted_index.resolutions, | 153 |
| abstract_inverted_index.comprehensive | 121 |
| abstract_inverted_index.expectations. | 25 |
| abstract_inverted_index.participants, | 126 |
| abstract_inverted_index.satisfaction. | 47 |
| abstract_inverted_index.technological | 20 |
| abstract_inverted_index.unprecedented | 9 |
| abstract_inverted_index.QoE-prediction | 174 |
| abstract_inverted_index.video-specific | 233 |
| abstract_inverted_index.(retrospective) | 135 |
| abstract_inverted_index.continuous-time | 130 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |