Scalable Autoregressive Deep Surrogates for Dendritic Microstructure Dynamics Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.03884
Microstructural pattern formation, such as dendrite growth, occurs widely in materials and energy systems, significantly influencing material properties and functional performance. While the phase-field method has emerged as a powerful computational tool for modeling microstructure dynamics, its high computational cost limits its integration into practical materials design workflows. Here, we introduce a machine-learning framework using autoregressive deep surrogates trained on short trajectories from quantitative phase-field simulations of alloy solidification in limited spatial domains. Once trained, these surrogates accurately predict dendritic evolution at scalable length and time scales, achieving a speed-up of more than two orders of magnitude. Demonstrations in isothermal growth and in directional solidification of a dilute Al-Cu alloy validate their ability to predict microstructure evolution. Quantitative comparisons with phase-field benchmarks further show excellent agreement in the tip-selection constant, morphological symmetry, and primary spacing evolution.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.03884
- https://arxiv.org/pdf/2511.03884
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416022637
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416022637Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.03884Digital Object Identifier
- Title
-
Scalable Autoregressive Deep Surrogates for Dendritic Microstructure DynamicsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-05Full publication date if available
- Authors
-
Kaihua Ji, Luning Sun, Shusen Liu, Fei Zhou, Tae Wook HeoList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.03884Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.03884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.03884Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416022637 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.03884 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.03884 |
| ids.openalex | https://openalex.org/W4416022637 |
| fwci | |
| type | preprint |
| title | Scalable Autoregressive Deep Surrogates for Dendritic Microstructure Dynamics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.03884 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.03884 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.03884 |
| locations[1].id | doi:10.48550/arxiv.2511.03884 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.03884 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5028088752 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-8932-2396 |
| authorships[0].author.display_name | Kaihua Ji |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ji, Kaihua |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5087758954 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2470-4278 |
| authorships[1].author.display_name | Luning Sun |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sun, Luning |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101523517 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6455-8391 |
| authorships[2].author.display_name | Shusen Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Shusen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100610923 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9659-4648 |
| authorships[3].author.display_name | Fei Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Fei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058066771 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0765-3480 |
| authorships[4].author.display_name | Tae Wook Heo |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Heo, Tae Wook |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.03884 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-08T00:00:00 |
| display_name | Scalable Autoregressive Deep Surrogates for Dendritic Microstructure Dynamics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.03884 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.03884 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.03884 |
| primary_location.id | pmh:oai:arXiv.org:2511.03884 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.03884 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.03884 |
| publication_date | 2025-11-05 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 28, 51, 88, 106 |
| abstract_inverted_index.as | 4, 27 |
| abstract_inverted_index.at | 81 |
| abstract_inverted_index.in | 9, 69, 98, 102, 126 |
| abstract_inverted_index.of | 66, 90, 95, 105 |
| abstract_inverted_index.on | 59 |
| abstract_inverted_index.to | 113 |
| abstract_inverted_index.we | 49 |
| abstract_inverted_index.and | 11, 18, 84, 101, 132 |
| abstract_inverted_index.for | 32 |
| abstract_inverted_index.has | 25 |
| abstract_inverted_index.its | 36, 41 |
| abstract_inverted_index.the | 22, 127 |
| abstract_inverted_index.two | 93 |
| abstract_inverted_index.Once | 73 |
| abstract_inverted_index.cost | 39 |
| abstract_inverted_index.deep | 56 |
| abstract_inverted_index.from | 62 |
| abstract_inverted_index.high | 37 |
| abstract_inverted_index.into | 43 |
| abstract_inverted_index.more | 91 |
| abstract_inverted_index.show | 123 |
| abstract_inverted_index.such | 3 |
| abstract_inverted_index.than | 92 |
| abstract_inverted_index.time | 85 |
| abstract_inverted_index.tool | 31 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.Al-Cu | 108 |
| abstract_inverted_index.Here, | 48 |
| abstract_inverted_index.While | 21 |
| abstract_inverted_index.alloy | 67, 109 |
| abstract_inverted_index.short | 60 |
| abstract_inverted_index.their | 111 |
| abstract_inverted_index.these | 75 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.design | 46 |
| abstract_inverted_index.dilute | 107 |
| abstract_inverted_index.energy | 12 |
| abstract_inverted_index.growth | 100 |
| abstract_inverted_index.length | 83 |
| abstract_inverted_index.limits | 40 |
| abstract_inverted_index.method | 24 |
| abstract_inverted_index.occurs | 7 |
| abstract_inverted_index.orders | 94 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.ability | 112 |
| abstract_inverted_index.emerged | 26 |
| abstract_inverted_index.further | 122 |
| abstract_inverted_index.growth, | 6 |
| abstract_inverted_index.limited | 70 |
| abstract_inverted_index.pattern | 1 |
| abstract_inverted_index.predict | 78, 114 |
| abstract_inverted_index.primary | 133 |
| abstract_inverted_index.scales, | 86 |
| abstract_inverted_index.spacing | 134 |
| abstract_inverted_index.spatial | 71 |
| abstract_inverted_index.trained | 58 |
| abstract_inverted_index.dendrite | 5 |
| abstract_inverted_index.domains. | 72 |
| abstract_inverted_index.material | 16 |
| abstract_inverted_index.modeling | 33 |
| abstract_inverted_index.powerful | 29 |
| abstract_inverted_index.scalable | 82 |
| abstract_inverted_index.speed-up | 89 |
| abstract_inverted_index.systems, | 13 |
| abstract_inverted_index.trained, | 74 |
| abstract_inverted_index.validate | 110 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.agreement | 125 |
| abstract_inverted_index.constant, | 129 |
| abstract_inverted_index.dendritic | 79 |
| abstract_inverted_index.dynamics, | 35 |
| abstract_inverted_index.evolution | 80 |
| abstract_inverted_index.excellent | 124 |
| abstract_inverted_index.framework | 53 |
| abstract_inverted_index.introduce | 50 |
| abstract_inverted_index.materials | 10, 45 |
| abstract_inverted_index.practical | 44 |
| abstract_inverted_index.symmetry, | 131 |
| abstract_inverted_index.accurately | 77 |
| abstract_inverted_index.benchmarks | 121 |
| abstract_inverted_index.evolution. | 116, 135 |
| abstract_inverted_index.formation, | 2 |
| abstract_inverted_index.functional | 19 |
| abstract_inverted_index.isothermal | 99 |
| abstract_inverted_index.magnitude. | 96 |
| abstract_inverted_index.properties | 17 |
| abstract_inverted_index.surrogates | 57, 76 |
| abstract_inverted_index.workflows. | 47 |
| abstract_inverted_index.comparisons | 118 |
| abstract_inverted_index.directional | 103 |
| abstract_inverted_index.influencing | 15 |
| abstract_inverted_index.integration | 42 |
| abstract_inverted_index.phase-field | 23, 64, 120 |
| abstract_inverted_index.simulations | 65 |
| abstract_inverted_index.Quantitative | 117 |
| abstract_inverted_index.performance. | 20 |
| abstract_inverted_index.quantitative | 63 |
| abstract_inverted_index.trajectories | 61 |
| abstract_inverted_index.computational | 30, 38 |
| abstract_inverted_index.morphological | 130 |
| abstract_inverted_index.significantly | 14 |
| abstract_inverted_index.tip-selection | 128 |
| abstract_inverted_index.Demonstrations | 97 |
| abstract_inverted_index.autoregressive | 55 |
| abstract_inverted_index.microstructure | 34, 115 |
| abstract_inverted_index.solidification | 68, 104 |
| abstract_inverted_index.Microstructural | 0 |
| abstract_inverted_index.machine-learning | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |