Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.21408
Despite their widespread use, large language models (LLMs) are known to hallucinate incorrect information and be poorly calibrated. This makes the uncertainty quantification of these models of critical importance, especially in high-stakes domains, such as autonomy and healthcare. Prior work has made Bayesian deep learning-based approaches to this problem more tractable by performing inference over the low-rank adaptation (LoRA) parameters of a fine-tuned model. While effective, these approaches struggle to scale to larger LLMs due to requiring further additional parameters compared to LoRA. In this work we present $\textbf{Scala}$ble $\textbf{B}$ayesian $\textbf{L}$ow-Rank Adaptation via Stochastic Variational Subspace Inference (ScalaBL). We perform Bayesian inference in an $r$-dimensional subspace, for LoRA rank $r$. By repurposing the LoRA parameters as projection matrices, we are able to map samples from this subspace into the full weight space of the LLM. This allows us to learn all the parameters of our approach using stochastic variational inference. Despite the low dimensionality of our subspace, we are able to achieve competitive performance with state-of-the-art approaches while only requiring ${\sim}1000$ additional parameters. Furthermore, it allows us to scale up to the largest Bayesian LLM to date, with four times as a many base parameters as prior work.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.21408
- https://arxiv.org/pdf/2506.21408
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415183342
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415183342Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.21408Digital Object Identifier
- Title
-
Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace InferenceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-26Full publication date if available
- Authors
-
Colin Samplawski, Adam D. Cobb, Manoj Acharya, Ramneet Kaur, Susmit JhaList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.21408Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.21408Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.21408Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415183342 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.21408 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.21408 |
| ids.openalex | https://openalex.org/W4415183342 |
| fwci | |
| type | preprint |
| title | Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9900000095367432 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.955299973487854 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9182000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.21408 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.21408 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.21408 |
| locations[1].id | doi:10.48550/arxiv.2506.21408 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.21408 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5011915615 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Colin Samplawski |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samplawski, Colin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102898820 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6638-1788 |
| authorships[1].author.display_name | Adam D. Cobb |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cobb, Adam D. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5019134968 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0223-3556 |
| authorships[2].author.display_name | Manoj Acharya |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Acharya, Manoj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108816777 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ramneet Kaur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kaur, Ramneet |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5035902535 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5983-9095 |
| authorships[4].author.display_name | Susmit Jha |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jha, Susmit |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.21408 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-15T00:00:00 |
| display_name | Scalable Bayesian Low-Rank Adaptation of Large Language Models via Stochastic Variational Subspace Inference |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9900000095367432 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.21408 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.21408 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.21408 |
| primary_location.id | pmh:oai:arXiv.org:2506.21408 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.21408 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.21408 |
| publication_date | 2025-06-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 61, 191 |
| abstract_inverted_index.By | 110 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.We | 98 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.as | 34, 115, 190, 195 |
| abstract_inverted_index.be | 15 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 30, 102 |
| abstract_inverted_index.it | 174 |
| abstract_inverted_index.of | 23, 26, 60, 132, 143, 154 |
| abstract_inverted_index.to | 10, 46, 69, 71, 75, 81, 121, 138, 160, 177, 180, 185 |
| abstract_inverted_index.up | 179 |
| abstract_inverted_index.us | 137, 176 |
| abstract_inverted_index.we | 86, 118, 157 |
| abstract_inverted_index.LLM | 184 |
| abstract_inverted_index.all | 140 |
| abstract_inverted_index.and | 14, 36 |
| abstract_inverted_index.are | 8, 119, 158 |
| abstract_inverted_index.due | 74 |
| abstract_inverted_index.for | 106 |
| abstract_inverted_index.has | 40 |
| abstract_inverted_index.low | 152 |
| abstract_inverted_index.map | 122 |
| abstract_inverted_index.our | 144, 155 |
| abstract_inverted_index.the | 20, 55, 112, 128, 133, 141, 151, 181 |
| abstract_inverted_index.via | 92 |
| abstract_inverted_index.$r$. | 109 |
| abstract_inverted_index.LLM. | 134 |
| abstract_inverted_index.LLMs | 73 |
| abstract_inverted_index.LoRA | 107, 113 |
| abstract_inverted_index.This | 18, 135 |
| abstract_inverted_index.able | 120, 159 |
| abstract_inverted_index.base | 193 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.four | 188 |
| abstract_inverted_index.from | 124 |
| abstract_inverted_index.full | 129 |
| abstract_inverted_index.into | 127 |
| abstract_inverted_index.made | 41 |
| abstract_inverted_index.many | 192 |
| abstract_inverted_index.more | 49 |
| abstract_inverted_index.only | 168 |
| abstract_inverted_index.over | 54 |
| abstract_inverted_index.rank | 108 |
| abstract_inverted_index.such | 33 |
| abstract_inverted_index.this | 47, 84, 125 |
| abstract_inverted_index.use, | 3 |
| abstract_inverted_index.with | 164, 187 |
| abstract_inverted_index.work | 39, 85 |
| abstract_inverted_index.LoRA. | 82 |
| abstract_inverted_index.Prior | 38 |
| abstract_inverted_index.While | 64 |
| abstract_inverted_index.date, | 186 |
| abstract_inverted_index.known | 9 |
| abstract_inverted_index.large | 4 |
| abstract_inverted_index.learn | 139 |
| abstract_inverted_index.makes | 19 |
| abstract_inverted_index.prior | 196 |
| abstract_inverted_index.scale | 70, 178 |
| abstract_inverted_index.space | 131 |
| abstract_inverted_index.their | 1 |
| abstract_inverted_index.these | 24, 66 |
| abstract_inverted_index.times | 189 |
| abstract_inverted_index.using | 146 |
| abstract_inverted_index.while | 167 |
| abstract_inverted_index.work. | 197 |
| abstract_inverted_index.(LLMs) | 7 |
| abstract_inverted_index.(LoRA) | 58 |
| abstract_inverted_index.allows | 136, 175 |
| abstract_inverted_index.larger | 72 |
| abstract_inverted_index.model. | 63 |
| abstract_inverted_index.models | 6, 25 |
| abstract_inverted_index.poorly | 16 |
| abstract_inverted_index.weight | 130 |
| abstract_inverted_index.Despite | 0, 150 |
| abstract_inverted_index.achieve | 161 |
| abstract_inverted_index.further | 77 |
| abstract_inverted_index.largest | 182 |
| abstract_inverted_index.perform | 99 |
| abstract_inverted_index.present | 87 |
| abstract_inverted_index.problem | 48 |
| abstract_inverted_index.samples | 123 |
| abstract_inverted_index.Bayesian | 42, 100, 183 |
| abstract_inverted_index.Subspace | 95 |
| abstract_inverted_index.approach | 145 |
| abstract_inverted_index.autonomy | 35 |
| abstract_inverted_index.compared | 80 |
| abstract_inverted_index.critical | 27 |
| abstract_inverted_index.domains, | 32 |
| abstract_inverted_index.language | 5 |
| abstract_inverted_index.low-rank | 56 |
| abstract_inverted_index.struggle | 68 |
| abstract_inverted_index.subspace | 126 |
| abstract_inverted_index.Inference | 96 |
| abstract_inverted_index.incorrect | 12 |
| abstract_inverted_index.inference | 53, 101 |
| abstract_inverted_index.matrices, | 117 |
| abstract_inverted_index.requiring | 76, 169 |
| abstract_inverted_index.subspace, | 105, 156 |
| abstract_inverted_index.tractable | 50 |
| abstract_inverted_index.(ScalaBL). | 97 |
| abstract_inverted_index.Adaptation | 91 |
| abstract_inverted_index.Stochastic | 93 |
| abstract_inverted_index.adaptation | 57 |
| abstract_inverted_index.additional | 78, 171 |
| abstract_inverted_index.approaches | 45, 67, 166 |
| abstract_inverted_index.effective, | 65 |
| abstract_inverted_index.especially | 29 |
| abstract_inverted_index.fine-tuned | 62 |
| abstract_inverted_index.inference. | 149 |
| abstract_inverted_index.parameters | 59, 79, 114, 142, 194 |
| abstract_inverted_index.performing | 52 |
| abstract_inverted_index.projection | 116 |
| abstract_inverted_index.stochastic | 147 |
| abstract_inverted_index.widespread | 2 |
| abstract_inverted_index.Variational | 94 |
| abstract_inverted_index.calibrated. | 17 |
| abstract_inverted_index.competitive | 162 |
| abstract_inverted_index.hallucinate | 11 |
| abstract_inverted_index.healthcare. | 37 |
| abstract_inverted_index.high-stakes | 31 |
| abstract_inverted_index.importance, | 28 |
| abstract_inverted_index.information | 13 |
| abstract_inverted_index.parameters. | 172 |
| abstract_inverted_index.performance | 163 |
| abstract_inverted_index.repurposing | 111 |
| abstract_inverted_index.uncertainty | 21 |
| abstract_inverted_index.variational | 148 |
| abstract_inverted_index.${\sim}1000$ | 170 |
| abstract_inverted_index.Furthermore, | 173 |
| abstract_inverted_index.dimensionality | 153 |
| abstract_inverted_index.learning-based | 44 |
| abstract_inverted_index.quantification | 22 |
| abstract_inverted_index.$r$-dimensional | 104 |
| abstract_inverted_index.state-of-the-art | 165 |
| abstract_inverted_index.$\textbf{B}$ayesian | 89 |
| abstract_inverted_index.$\textbf{L}$ow-Rank | 90 |
| abstract_inverted_index.$\textbf{Scala}$ble | 88 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |