Scalable Ensemble Feature Selection Strategy to Enhance Clinical Interpretability in Multi-Biometric Healthcare Dataset Article Swipe
Ida Maruotto
,
Federica Kiyomi Ciliberti
,
Paolo Gargiulo
,
Marco Recenti
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5019650
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5019650
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5019650
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404984817
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404984817Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5019650Digital Object Identifier
- Title
-
Scalable Ensemble Feature Selection Strategy to Enhance Clinical Interpretability in Multi-Biometric Healthcare DatasetWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ida Maruotto, Federica Kiyomi Ciliberti, Paolo Gargiulo, Marco RecentiList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5019650Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5019650Direct OA link when available
- Concepts
-
Interpretability, Feature selection, Biometrics, Computer science, Scalability, Artificial intelligence, Feature (linguistics), Selection (genetic algorithm), Machine learning, Data mining, Pattern recognition (psychology), Philosophy, Database, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404984817 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5019650 |
| ids.doi | https://doi.org/10.2139/ssrn.5019650 |
| ids.openalex | https://openalex.org/W4404984817 |
| fwci | 0.0 |
| type | preprint |
| title | Scalable Ensemble Feature Selection Strategy to Enhance Clinical Interpretability in Multi-Biometric Healthcare Dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9667999744415283 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9447852373123169 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7646262049674988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C184297639 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7440970540046692 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q177765 |
| concepts[2].display_name | Biometrics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7070859670639038 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C48044578 |
| concepts[4].level | 2 |
| concepts[4].score | 0.7017881274223328 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[4].display_name | Scalability |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5534866452217102 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5358433127403259 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C81917197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5349240303039551 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[7].display_name | Selection (genetic algorithm) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4949437975883484 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.411914587020874 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.39318978786468506 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C77088390 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[12].display_name | Database |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9447852373123169 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.7646262049674988 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/biometrics |
| keywords[2].score | 0.7440970540046692 |
| keywords[2].display_name | Biometrics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7070859670639038 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/scalability |
| keywords[4].score | 0.7017881274223328 |
| keywords[4].display_name | Scalability |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5534866452217102 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5358433127403259 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/selection |
| keywords[7].score | 0.5349240303039551 |
| keywords[7].display_name | Selection (genetic algorithm) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4949437975883484 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.411914587020874 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.39318978786468506 |
| keywords[10].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5019650 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5019650 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5114986869 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ida Maruotto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ida Maruotto |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058457286 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8378-9478 |
| authorships[1].author.display_name | Federica Kiyomi Ciliberti |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Federica Kiyomi Ciliberti |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078492622 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5049-4817 |
| authorships[2].author.display_name | Paolo Gargiulo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paolo Gargiulo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031861835 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9440-8434 |
| authorships[3].author.display_name | Marco Recenti |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Marco Recenti |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5019650 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scalable Ensemble Feature Selection Strategy to Enhance Clinical Interpretability in Multi-Biometric Healthcare Dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9667999744415283 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2905433371, https://openalex.org/W2888392564, https://openalex.org/W4310278675, https://openalex.org/W4388422664, https://openalex.org/W4390569940, https://openalex.org/W4361193272, https://openalex.org/W2963326959, https://openalex.org/W4388685194, https://openalex.org/W4386564352, https://openalex.org/W2952668426 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5019650 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5019650 |
| primary_location.id | doi:10.2139/ssrn.5019650 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5019650 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.24710445 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |