Scalable Variational Causal Discovery Unconstrained by Acyclicity Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3233/faia240801
Bayesian causal discovery offers the power to quantify epistemic uncertainties among a broad range of structurally diverse causal theories potentially explaining the data, represented in forms of directed acyclic graphs (DAGs). However, existing methods struggle with efficient DAG sampling due to the complex acyclicity constraint. In this study, we propose a scalable Bayesian approach to effectively learn the posterior distribution over causal graphs given observational data thanks to the ability to generate DAGs without explicitly enforcing acyclicity. Specifically, we introduce a novel differentiable DAG sampling method that can generate a valid acyclic causal graph by mapping an unconstrained distribution of implicit topological orders to a distribution over DAGs. Given this efficient DAG sampling scheme, we are able to model the posterior distribution over causal graphs using a simple variational distribution over a continuous domain, which can be learned via the variational inference framework. Extensive empirical experiments on both simulated and real datasets demonstrate the superior performance of the proposed model compared to several state-of-the-art baselines.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/faia240801
- https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801
- OA Status
- hybrid
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403518083
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403518083Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia240801Digital Object Identifier
- Title
-
Scalable Variational Causal Discovery Unconstrained by AcyclicityWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Nu Hoang, Bao Duong, Thin NguyenList of authors in order
- Landing page
-
https://doi.org/10.3233/faia240801Publisher landing page
- PDF URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801Direct OA link when available
- Concepts
-
Scalability, Computer science, Theoretical computer science, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403518083 |
|---|---|
| doi | https://doi.org/10.3233/faia240801 |
| ids.doi | https://doi.org/10.3233/faia240801 |
| ids.openalex | https://openalex.org/W4403518083 |
| fwci | 15.39130468 |
| type | book-chapter |
| title | Scalable Variational Causal Discovery Unconstrained by Acyclicity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10778 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.8737999796867371 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1207 |
| topics[0].subfield.display_name | History and Philosophy of Science |
| topics[0].display_name | Philosophy and History of Science |
| topics[1].id | https://openalex.org/T11303 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8575000166893005 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Bayesian Modeling and Causal Inference |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.7890999913215637 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48044578 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7965871691703796 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[0].display_name | Scalability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.628521203994751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C80444323 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3773638606071472 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[2].display_name | Theoretical computer science |
| concepts[3].id | https://openalex.org/C77088390 |
| concepts[3].level | 1 |
| concepts[3].score | 0.0877443253993988 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[3].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/scalability |
| keywords[0].score | 0.7965871691703796 |
| keywords[0].display_name | Scalability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.628521203994751 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[2].score | 0.3773638606071472 |
| keywords[2].display_name | Theoretical computer science |
| keywords[3].id | https://openalex.org/keywords/database |
| keywords[3].score | 0.0877443253993988 |
| keywords[3].display_name | Database |
| language | en |
| locations[0].id | doi:10.3233/faia240801 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia240801 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102703553 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Nu Hoang |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[0].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I149704539 |
| authorships[0].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Deakin University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nu Hoang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| authorships[1].author.id | https://openalex.org/A5102811209 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9850-0270 |
| authorships[1].author.display_name | Bao Duong |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[1].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I149704539 |
| authorships[1].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Deakin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bao Duong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| authorships[2].author.id | https://openalex.org/A5100705489 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3467-8963 |
| authorships[2].author.display_name | Thin Nguyen |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149704539 |
| authorships[2].affiliations[0].raw_affiliation_string | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I149704539 |
| authorships[2].institutions[0].ror | https://ror.org/02czsnj07 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149704539 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Deakin University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Thin Nguyen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Applied Artificial Intelligence Institute (A I ), Deakin University, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scalable Variational Causal Discovery Unconstrained by Acyclicity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10778 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.8737999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1207 |
| primary_topic.subfield.display_name | History and Philosophy of Science |
| primary_topic.display_name | Philosophy and History of Science |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2389214306 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/faia240801 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia240801 |
| primary_location.id | doi:10.3233/faia240801 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA240801 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia240801 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 50, 80, 89, 104, 126, 131 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.an | 96 |
| abstract_inverted_index.be | 136 |
| abstract_inverted_index.by | 94 |
| abstract_inverted_index.in | 24 |
| abstract_inverted_index.of | 14, 26, 99, 156 |
| abstract_inverted_index.on | 146 |
| abstract_inverted_index.to | 6, 40, 54, 67, 70, 103, 117, 161 |
| abstract_inverted_index.we | 48, 78, 114 |
| abstract_inverted_index.DAG | 37, 83, 111 |
| abstract_inverted_index.and | 149 |
| abstract_inverted_index.are | 115 |
| abstract_inverted_index.can | 87, 135 |
| abstract_inverted_index.due | 39 |
| abstract_inverted_index.the | 4, 21, 41, 57, 68, 119, 139, 153, 157 |
| abstract_inverted_index.via | 138 |
| abstract_inverted_index.DAGs | 72 |
| abstract_inverted_index.able | 116 |
| abstract_inverted_index.both | 147 |
| abstract_inverted_index.data | 65 |
| abstract_inverted_index.over | 60, 106, 122, 130 |
| abstract_inverted_index.real | 150 |
| abstract_inverted_index.that | 86 |
| abstract_inverted_index.this | 46, 109 |
| abstract_inverted_index.with | 35 |
| abstract_inverted_index.DAGs. | 107 |
| abstract_inverted_index.Given | 108 |
| abstract_inverted_index.among | 10 |
| abstract_inverted_index.broad | 12 |
| abstract_inverted_index.data, | 22 |
| abstract_inverted_index.forms | 25 |
| abstract_inverted_index.given | 63 |
| abstract_inverted_index.graph | 93 |
| abstract_inverted_index.learn | 56 |
| abstract_inverted_index.model | 118, 159 |
| abstract_inverted_index.novel | 81 |
| abstract_inverted_index.power | 5 |
| abstract_inverted_index.range | 13 |
| abstract_inverted_index.using | 125 |
| abstract_inverted_index.valid | 90 |
| abstract_inverted_index.which | 134 |
| abstract_inverted_index.causal | 1, 17, 61, 92, 123 |
| abstract_inverted_index.graphs | 29, 62, 124 |
| abstract_inverted_index.method | 85 |
| abstract_inverted_index.offers | 3 |
| abstract_inverted_index.orders | 102 |
| abstract_inverted_index.simple | 127 |
| abstract_inverted_index.study, | 47 |
| abstract_inverted_index.thanks | 66 |
| abstract_inverted_index.(DAGs). | 30 |
| abstract_inverted_index.ability | 69 |
| abstract_inverted_index.acyclic | 28, 91 |
| abstract_inverted_index.complex | 42 |
| abstract_inverted_index.diverse | 16 |
| abstract_inverted_index.domain, | 133 |
| abstract_inverted_index.learned | 137 |
| abstract_inverted_index.mapping | 95 |
| abstract_inverted_index.methods | 33 |
| abstract_inverted_index.propose | 49 |
| abstract_inverted_index.scheme, | 113 |
| abstract_inverted_index.several | 162 |
| abstract_inverted_index.without | 73 |
| abstract_inverted_index.Bayesian | 0, 52 |
| abstract_inverted_index.However, | 31 |
| abstract_inverted_index.approach | 53 |
| abstract_inverted_index.compared | 160 |
| abstract_inverted_index.datasets | 151 |
| abstract_inverted_index.directed | 27 |
| abstract_inverted_index.existing | 32 |
| abstract_inverted_index.generate | 71, 88 |
| abstract_inverted_index.implicit | 100 |
| abstract_inverted_index.proposed | 158 |
| abstract_inverted_index.quantify | 7 |
| abstract_inverted_index.sampling | 38, 84, 112 |
| abstract_inverted_index.scalable | 51 |
| abstract_inverted_index.struggle | 34 |
| abstract_inverted_index.superior | 154 |
| abstract_inverted_index.theories | 18 |
| abstract_inverted_index.Extensive | 143 |
| abstract_inverted_index.discovery | 2 |
| abstract_inverted_index.efficient | 36, 110 |
| abstract_inverted_index.empirical | 144 |
| abstract_inverted_index.enforcing | 75 |
| abstract_inverted_index.epistemic | 8 |
| abstract_inverted_index.inference | 141 |
| abstract_inverted_index.introduce | 79 |
| abstract_inverted_index.posterior | 58, 120 |
| abstract_inverted_index.simulated | 148 |
| abstract_inverted_index.acyclicity | 43 |
| abstract_inverted_index.baselines. | 164 |
| abstract_inverted_index.continuous | 132 |
| abstract_inverted_index.explaining | 20 |
| abstract_inverted_index.explicitly | 74 |
| abstract_inverted_index.framework. | 142 |
| abstract_inverted_index.acyclicity. | 76 |
| abstract_inverted_index.constraint. | 44 |
| abstract_inverted_index.demonstrate | 152 |
| abstract_inverted_index.effectively | 55 |
| abstract_inverted_index.experiments | 145 |
| abstract_inverted_index.performance | 155 |
| abstract_inverted_index.potentially | 19 |
| abstract_inverted_index.represented | 23 |
| abstract_inverted_index.topological | 101 |
| abstract_inverted_index.variational | 128, 140 |
| abstract_inverted_index.distribution | 59, 98, 105, 121, 129 |
| abstract_inverted_index.structurally | 15 |
| abstract_inverted_index.Specifically, | 77 |
| abstract_inverted_index.observational | 64 |
| abstract_inverted_index.uncertainties | 9 |
| abstract_inverted_index.unconstrained | 97 |
| abstract_inverted_index.differentiable | 82 |
| abstract_inverted_index.state-of-the-art | 163 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.98403738 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |