Scale-up of complex molecular reaction system by hybrid mechanistic modeling and deep transfer learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41467-025-63982-2
The scale-up of chemical processes involves substantial changes in reactor size, operational modes, and data characteristics, leading to significant challenges in predicting product distribution across scales. This study presents a unified modeling framework that integrates the mechanistic model with deep transfer learning to accelerate chemical process scale-up. The framework is demonstrated through a case study on naphtha fluid catalytic cracking. A molecular-level kinetic model was developed from laboratory-scale experimental data, and a deep neural network was designed and trained to represent complex molecular reaction systems. To address the challenge of discrepancies in data types at various scales, a property-informed transfer learning strategy was developed by incorporating bulk property equations into the neural network. This approach enabled automated prediction of pilot-scale product distribution with minimal data. Moreover, process conditions of the pilot plant were optimized using a multi-objective optimization algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41467-025-63982-2
- https://www.nature.com/articles/s41467-025-63982-2.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 45
- OpenAlex ID
- https://openalex.org/W4414896200
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414896200Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41467-025-63982-2Digital Object Identifier
- Title
-
Scale-up of complex molecular reaction system by hybrid mechanistic modeling and deep transfer learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Zhengyu Chen, Xie Yong-qing, Chunming Xu, Linzhou ZhangList of authors in order
- Landing page
-
https://doi.org/10.1038/s41467-025-63982-2Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41467-025-63982-2.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41467-025-63982-2.pdfDirect OA link when available
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414896200 |
|---|---|
| doi | https://doi.org/10.1038/s41467-025-63982-2 |
| ids.doi | https://doi.org/10.1038/s41467-025-63982-2 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41057361 |
| ids.openalex | https://openalex.org/W4414896200 |
| fwci | 3.49790559 |
| type | article |
| title | Scale-up of complex molecular reaction system by hybrid mechanistic modeling and deep transfer learning |
| biblio.issue | 1 |
| biblio.volume | 16 |
| biblio.last_page | 8905 |
| biblio.first_page | 8905 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10409 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Fuel Cells and Related Materials |
| is_xpac | False |
| apc_list.value | 3920 |
| apc_list.currency | GBP |
| apc_list.value_usd | 4808 |
| apc_paid.value | 3920 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 4808 |
| language | en |
| locations[0].id | doi:10.1038/s41467-025-63982-2 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S64187185 |
| locations[0].source.issn | 2041-1723 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2041-1723 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Nature Communications |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41467-025-63982-2.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Nature Communications |
| locations[0].landing_page_url | https://doi.org/10.1038/s41467-025-63982-2 |
| locations[1].id | pmid:41057361 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Nature communications |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41057361 |
| locations[2].id | pmh:oai:doaj.org/article:6b982827d0b549d3911789c512c87371 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Nature Communications, Vol 16, Iss 1, Pp 1-14 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/6b982827d0b549d3911789c512c87371 |
| locations[3].id | pmh:oai:europepmc.org:11312639 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12504612 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071376060 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0487-5037 |
| authorships[0].author.display_name | Zhengyu Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204553293 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[0].institutions[0].id | https://openalex.org/I204553293 |
| authorships[0].institutions[0].ror | https://ror.org/041qf4r12 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204553293 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Petroleum, Beijing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhengyu Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[1].author.id | https://openalex.org/A5025158407 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Xie Yong-qing |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204553293 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[1].institutions[0].id | https://openalex.org/I204553293 |
| authorships[1].institutions[0].ror | https://ror.org/041qf4r12 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204553293 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Petroleum, Beijing |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongqing Xie |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[2].author.id | https://openalex.org/A5100385667 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5135-5440 |
| authorships[2].author.display_name | Chunming Xu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204553293 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[2].institutions[0].id | https://openalex.org/I204553293 |
| authorships[2].institutions[0].ror | https://ror.org/041qf4r12 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204553293 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Petroleum, Beijing |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chunming Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[3].author.id | https://openalex.org/A5046606764 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8354-784X |
| authorships[3].author.display_name | Linzhou Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204553293 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| authorships[3].institutions[0].id | https://openalex.org/I204553293 |
| authorships[3].institutions[0].ror | https://ror.org/041qf4r12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204553293 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Petroleum, Beijing |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Linzhou Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering Center (PMEC), China University of Petroleum, Beijing, PR China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41467-025-63982-2.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scale-up of complex molecular reaction system by hybrid mechanistic modeling and deep transfer learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41467-025-63982-2 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S64187185 |
| best_oa_location.source.issn | 2041-1723 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2041-1723 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Nature Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41467-025-63982-2.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Nature Communications |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41467-025-63982-2 |
| primary_location.id | doi:10.1038/s41467-025-63982-2 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S64187185 |
| primary_location.source.issn | 2041-1723 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2041-1723 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Nature Communications |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41467-025-63982-2.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Nature Communications |
| primary_location.landing_page_url | https://doi.org/10.1038/s41467-025-63982-2 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3199740496, https://openalex.org/W2080566006, https://openalex.org/W2125035607, https://openalex.org/W2277091242, https://openalex.org/W1987328141, https://openalex.org/W2046082071, https://openalex.org/W2916482583, https://openalex.org/W1985164451, https://openalex.org/W2003672079, https://openalex.org/W3039994259, https://openalex.org/W2327127521, https://openalex.org/W2321268514, https://openalex.org/W2785397012, https://openalex.org/W1979160118, https://openalex.org/W1983848244, https://openalex.org/W3080939329, https://openalex.org/W1974318648, https://openalex.org/W2945179216, https://openalex.org/W2045207189, https://openalex.org/W1202535006, https://openalex.org/W4220891201, https://openalex.org/W2059875215, https://openalex.org/W2020962674, https://openalex.org/W2094358990, https://openalex.org/W3161200675, https://openalex.org/W3024734364, https://openalex.org/W4206927419, https://openalex.org/W4392601766, https://openalex.org/W3189264902, https://openalex.org/W2899283552, https://openalex.org/W4297969103, https://openalex.org/W2607056031, https://openalex.org/W2893388177, https://openalex.org/W4214699538, https://openalex.org/W3041133507, https://openalex.org/W4392157869, https://openalex.org/W3000665539, https://openalex.org/W4322773459, https://openalex.org/W2884052622, https://openalex.org/W2020185420, https://openalex.org/W1994346306, https://openalex.org/W2072520713, https://openalex.org/W2793355636, https://openalex.org/W2990877207, https://openalex.org/W6968427982 |
| referenced_works_count | 45 |
| abstract_inverted_index.A | 60 |
| abstract_inverted_index.a | 29, 52, 71, 97, 135 |
| abstract_inverted_index.To | 85 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.by | 104 |
| abstract_inverted_index.in | 8, 20, 91 |
| abstract_inverted_index.is | 49 |
| abstract_inverted_index.of | 2, 89, 118, 128 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.to | 17, 42, 79 |
| abstract_inverted_index.The | 0, 47 |
| abstract_inverted_index.and | 13, 70, 77 |
| abstract_inverted_index.the | 35, 87, 110, 129 |
| abstract_inverted_index.was | 64, 75, 102 |
| abstract_inverted_index.This | 26, 113 |
| abstract_inverted_index.bulk | 106 |
| abstract_inverted_index.case | 53 |
| abstract_inverted_index.data | 14, 92 |
| abstract_inverted_index.deep | 39, 72 |
| abstract_inverted_index.from | 66 |
| abstract_inverted_index.into | 109 |
| abstract_inverted_index.that | 33 |
| abstract_inverted_index.were | 132 |
| abstract_inverted_index.with | 38, 122 |
| abstract_inverted_index.data, | 69 |
| abstract_inverted_index.data. | 124 |
| abstract_inverted_index.fluid | 57 |
| abstract_inverted_index.model | 37, 63 |
| abstract_inverted_index.pilot | 130 |
| abstract_inverted_index.plant | 131 |
| abstract_inverted_index.size, | 10 |
| abstract_inverted_index.study | 27, 54 |
| abstract_inverted_index.types | 93 |
| abstract_inverted_index.using | 134 |
| abstract_inverted_index.across | 24 |
| abstract_inverted_index.modes, | 12 |
| abstract_inverted_index.neural | 73, 111 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.changes | 7 |
| abstract_inverted_index.complex | 81 |
| abstract_inverted_index.enabled | 115 |
| abstract_inverted_index.kinetic | 62 |
| abstract_inverted_index.leading | 16 |
| abstract_inverted_index.minimal | 123 |
| abstract_inverted_index.naphtha | 56 |
| abstract_inverted_index.network | 74 |
| abstract_inverted_index.process | 45, 126 |
| abstract_inverted_index.product | 22, 120 |
| abstract_inverted_index.reactor | 9 |
| abstract_inverted_index.scales, | 96 |
| abstract_inverted_index.scales. | 25 |
| abstract_inverted_index.through | 51 |
| abstract_inverted_index.trained | 78 |
| abstract_inverted_index.unified | 30 |
| abstract_inverted_index.various | 95 |
| abstract_inverted_index.approach | 114 |
| abstract_inverted_index.chemical | 3, 44 |
| abstract_inverted_index.designed | 76 |
| abstract_inverted_index.involves | 5 |
| abstract_inverted_index.learning | 41, 100 |
| abstract_inverted_index.modeling | 31 |
| abstract_inverted_index.network. | 112 |
| abstract_inverted_index.presents | 28 |
| abstract_inverted_index.property | 107 |
| abstract_inverted_index.reaction | 83 |
| abstract_inverted_index.scale-up | 1 |
| abstract_inverted_index.strategy | 101 |
| abstract_inverted_index.systems. | 84 |
| abstract_inverted_index.transfer | 40, 99 |
| abstract_inverted_index.Moreover, | 125 |
| abstract_inverted_index.automated | 116 |
| abstract_inverted_index.catalytic | 58 |
| abstract_inverted_index.challenge | 88 |
| abstract_inverted_index.cracking. | 59 |
| abstract_inverted_index.developed | 65, 103 |
| abstract_inverted_index.equations | 108 |
| abstract_inverted_index.framework | 32, 48 |
| abstract_inverted_index.molecular | 82 |
| abstract_inverted_index.optimized | 133 |
| abstract_inverted_index.processes | 4 |
| abstract_inverted_index.represent | 80 |
| abstract_inverted_index.scale-up. | 46 |
| abstract_inverted_index.accelerate | 43 |
| abstract_inverted_index.algorithm. | 138 |
| abstract_inverted_index.challenges | 19 |
| abstract_inverted_index.conditions | 127 |
| abstract_inverted_index.integrates | 34 |
| abstract_inverted_index.predicting | 21 |
| abstract_inverted_index.prediction | 117 |
| abstract_inverted_index.mechanistic | 36 |
| abstract_inverted_index.operational | 11 |
| abstract_inverted_index.pilot-scale | 119 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.substantial | 6 |
| abstract_inverted_index.demonstrated | 50 |
| abstract_inverted_index.distribution | 23, 121 |
| abstract_inverted_index.experimental | 68 |
| abstract_inverted_index.optimization | 137 |
| abstract_inverted_index.discrepancies | 90 |
| abstract_inverted_index.incorporating | 105 |
| abstract_inverted_index.molecular-level | 61 |
| abstract_inverted_index.multi-objective | 136 |
| abstract_inverted_index.characteristics, | 15 |
| abstract_inverted_index.laboratory-scale | 67 |
| abstract_inverted_index.property-informed | 98 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.9070117 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |