Scaling Up Multi-Agent Reinforcement Learning: An Extensive Survey on Scalability Issues Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3410318
Multi-agent learning has made significant strides in recent years. Benefiting from deep learning, multi-agent deep reinforcement learning (MADRL) has transcended traditional limitations seen in tabular tasks, arousing tremendous research interest. However, compared to other challenges in MADRL, scalability remains underemphasized, impeding the application of MADRL in complex scenarios. Scalability stands as a foundational attribute of the multi-agent system (MAS), offering a potent approach to understand and improve collective learning among agents. It encompasses the capacity to handle the increasing state-action space which arises not only from a large number of agents but also from other factors related to agents and environment. In contrast to prior surveys, this work provides a comprehensive exposition of scalability concerns in MADRL. We first introduce foundational knowledge about deep reinforcement learning and MADRL to underscore the distinctiveness of scalability issues in this domain. Subsequently, we delve into the problems posed by scalability, examining agent complexity, environment complexity, and robustness against perturbation. We elaborate on the methods that demonstrate the evolution of scalable algorithms. To conclude this survey, we discuss challenges, identify trends, and outline possible directions for future work on scalability issues. It is our aspiration that this survey enhances the understanding of researchers in this field, providing a valuable resource for in-depth exploration.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3410318
- OA Status
- gold
- Cited By
- 12
- References
- 157
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399409514
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399409514Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3410318Digital Object Identifier
- Title
-
Scaling Up Multi-Agent Reinforcement Learning: An Extensive Survey on Scalability IssuesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Dingbang Liu, Fenghui Ren, Jun Yan, Guoxin Su, Wen Gu, Shōhei KatoList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3410318Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3410318Direct OA link when available
- Concepts
-
Reinforcement learning, Computer science, Scalability, Scaling, Artificial intelligence, Operating system, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
157Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399409514 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3410318 |
| ids.doi | https://doi.org/10.1109/access.2024.3410318 |
| ids.openalex | https://openalex.org/W4399409514 |
| fwci | 7.66534259 |
| type | article |
| title | Scaling Up Multi-Agent Reinforcement Learning: An Extensive Survey on Scalability Issues |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 94631 |
| biblio.first_page | 94610 |
| topics[0].id | https://openalex.org/T10462 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Reinforcement Learning in Robotics |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T10551 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Scheduling and Optimization Algorithms |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7738213539123535 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7386189699172974 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7233785390853882 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C99844830 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6664056181907654 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[3].display_name | Scaling |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.2765321433544159 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C111919701 |
| concepts[5].level | 1 |
| concepts[5].score | 0.1021508276462555 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[5].display_name | Operating system |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7738213539123535 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7386189699172974 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.7233785390853882 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/scaling |
| keywords[3].score | 0.6664056181907654 |
| keywords[3].display_name | Scaling |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.2765321433544159 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/operating-system |
| keywords[5].score | 0.1021508276462555 |
| keywords[5].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3410318 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3410318 |
| locations[1].id | pmh:oai:doaj.org/article:b3e4c5b27ffd4198a216a0afd48e8d09 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 94610-94631 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/b3e4c5b27ffd4198a216a0afd48e8d09 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067813480 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4597-1103 |
| authorships[0].author.display_name | Dingbang Liu |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I204824540 |
| authorships[0].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Wollongong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dingbang Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[1].author.id | https://openalex.org/A5080092678 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6159-7873 |
| authorships[1].author.display_name | Fenghui Ren |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I204824540 |
| authorships[1].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | University of Wollongong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fenghui Ren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[2].author.id | https://openalex.org/A5055987663 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6474-1049 |
| authorships[2].author.display_name | Jun Yan |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I204824540 |
| authorships[2].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | University of Wollongong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jun Yan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[3].author.id | https://openalex.org/A5060245971 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2087-4894 |
| authorships[3].author.display_name | Guoxin Su |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204824540 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I204824540 |
| authorships[3].institutions[0].ror | https://ror.org/00jtmb277 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204824540 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | University of Wollongong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Guoxin Su |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computing and Information Technology, University of Wollongong, Wollongong, NSW, Australia |
| authorships[4].author.id | https://openalex.org/A5103088878 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wen Gu |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177738480 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Innovative Distance Education and Research, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I177738480 |
| authorships[4].institutions[0].ror | https://ror.org/03frj4r98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177738480 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Japan Advanced Institute of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wen Gu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Innovative Distance Education and Research, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan |
| authorships[5].author.id | https://openalex.org/A5088832778 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4130-2729 |
| authorships[5].author.display_name | Shōhei Kato |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I197274945 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I197274945 |
| authorships[5].institutions[0].ror | https://ror.org/055yf1005 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I197274945 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Nagoya Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Shohei Kato |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3410318 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scaling Up Multi-Agent Reinforcement Learning: An Extensive Survey on Scalability Issues |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10462 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Reinforcement Learning in Robotics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4306904969, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2138720691, https://openalex.org/W2376932109 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3410318 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3410318 |
| primary_location.id | doi:10.1109/access.2024.3410318 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3410318 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2267186426, https://openalex.org/W2145339207, https://openalex.org/W3156295478, https://openalex.org/W2552976961, https://openalex.org/W1542941925, https://openalex.org/W6796861069, https://openalex.org/W6838608726, https://openalex.org/W6728155968, https://openalex.org/W2991046523, https://openalex.org/W3106649810, https://openalex.org/W2908261578, https://openalex.org/W2982316857, https://openalex.org/W2967474307, https://openalex.org/W2796829218, https://openalex.org/W2799899844, https://openalex.org/W6843449745, https://openalex.org/W2992948912, https://openalex.org/W3039426422, https://openalex.org/W6785535465, https://openalex.org/W6684921986, https://openalex.org/W6810173489, https://openalex.org/W6838792676, https://openalex.org/W6758881193, https://openalex.org/W6749032143, https://openalex.org/W2746553466, https://openalex.org/W6685444567, https://openalex.org/W6687681856, https://openalex.org/W6740092555, https://openalex.org/W6683300800, https://openalex.org/W2761873684, https://openalex.org/W6684205842, https://openalex.org/W6638018090, https://openalex.org/W6729958650, https://openalex.org/W6741002519, https://openalex.org/W6692846177, https://openalex.org/W6729556111, https://openalex.org/W6747473740, https://openalex.org/W1518858799, https://openalex.org/W6602332174, https://openalex.org/W6771904302, https://openalex.org/W6747941106, https://openalex.org/W6685388067, https://openalex.org/W6755069753, https://openalex.org/W2768629321, https://openalex.org/W2963890729, https://openalex.org/W2987046690, https://openalex.org/W6791079441, https://openalex.org/W4297098388, https://openalex.org/W6775529125, https://openalex.org/W3198359393, https://openalex.org/W4283714159, https://openalex.org/W6721408278, https://openalex.org/W2151834591, https://openalex.org/W3016335401, https://openalex.org/W2997536466, https://openalex.org/W6735641298, https://openalex.org/W2020009149, https://openalex.org/W6781210820, https://openalex.org/W6783940979, https://openalex.org/W3177987491, https://openalex.org/W6838969996, https://openalex.org/W6763248972, https://openalex.org/W6753207554, https://openalex.org/W6774120382, https://openalex.org/W6810123520, https://openalex.org/W6770566355, https://openalex.org/W6751796012, https://openalex.org/W6766224423, https://openalex.org/W6768539364, https://openalex.org/W2998367975, https://openalex.org/W4224217023, https://openalex.org/W3100191104, https://openalex.org/W3042612721, https://openalex.org/W6779416026, https://openalex.org/W6795235794, https://openalex.org/W3157150444, https://openalex.org/W4285034152, https://openalex.org/W6788318589, https://openalex.org/W2898567809, https://openalex.org/W6751700056, https://openalex.org/W3201284849, https://openalex.org/W2963934958, https://openalex.org/W6786706215, https://openalex.org/W2945991855, https://openalex.org/W6784778700, https://openalex.org/W2997940961, https://openalex.org/W2963390684, https://openalex.org/W6771007510, https://openalex.org/W6758846586, https://openalex.org/W2997502221, https://openalex.org/W2915117209, https://openalex.org/W3005850366, https://openalex.org/W6795139234, https://openalex.org/W6738796088, https://openalex.org/W2914154006, https://openalex.org/W2810602713, https://openalex.org/W6810644258, https://openalex.org/W6773690109, https://openalex.org/W6745190604, https://openalex.org/W6758518918, https://openalex.org/W6767919266, https://openalex.org/W6757645525, https://openalex.org/W6760327698, https://openalex.org/W4212793312, https://openalex.org/W6766070291, https://openalex.org/W6755224613, https://openalex.org/W6796931319, https://openalex.org/W4206984843, https://openalex.org/W6743367460, https://openalex.org/W2996037775, https://openalex.org/W6762427411, https://openalex.org/W2904455790, https://openalex.org/W3127047144, https://openalex.org/W2963390138, https://openalex.org/W6744562401, https://openalex.org/W6721101288, https://openalex.org/W6761839128, https://openalex.org/W4224874620, https://openalex.org/W3116666954, https://openalex.org/W2921955147, https://openalex.org/W4394963598, https://openalex.org/W2571699337, https://openalex.org/W3034311880, https://openalex.org/W2965723696, https://openalex.org/W2936516903, https://openalex.org/W6783747005, https://openalex.org/W3139071578, https://openalex.org/W3088335680, https://openalex.org/W6785173017, https://openalex.org/W3092692282, https://openalex.org/W1845972764, https://openalex.org/W6732354512, https://openalex.org/W4393097270, https://openalex.org/W2918965305, https://openalex.org/W4294605491, https://openalex.org/W56117469, https://openalex.org/W3170381145, https://openalex.org/W4226240898, https://openalex.org/W4287554470, https://openalex.org/W2736601468, https://openalex.org/W3161773022, https://openalex.org/W2805516822, https://openalex.org/W3091845268, https://openalex.org/W2991093017, https://openalex.org/W3099134564, https://openalex.org/W3099518626, https://openalex.org/W2596367596, https://openalex.org/W4283315289, https://openalex.org/W3106398159, https://openalex.org/W2908460759, https://openalex.org/W4301311528, https://openalex.org/W4287082680, https://openalex.org/W4301501993, https://openalex.org/W3107951310, https://openalex.org/W4287774906, https://openalex.org/W4297726143, https://openalex.org/W3008929485 |
| referenced_works_count | 157 |
| abstract_inverted_index.a | 51, 60, 86, 109, 203 |
| abstract_inverted_index.In | 101 |
| abstract_inverted_index.It | 71, 187 |
| abstract_inverted_index.To | 168 |
| abstract_inverted_index.We | 117, 156 |
| abstract_inverted_index.as | 50 |
| abstract_inverted_index.by | 145 |
| abstract_inverted_index.in | 6, 23, 35, 45, 115, 135, 199 |
| abstract_inverted_index.is | 188 |
| abstract_inverted_index.of | 43, 54, 89, 112, 132, 165, 197 |
| abstract_inverted_index.on | 158, 184 |
| abstract_inverted_index.to | 32, 63, 75, 97, 103, 128 |
| abstract_inverted_index.we | 139, 172 |
| abstract_inverted_index.and | 65, 99, 126, 152, 177 |
| abstract_inverted_index.but | 91 |
| abstract_inverted_index.for | 181, 206 |
| abstract_inverted_index.has | 2, 18 |
| abstract_inverted_index.not | 83 |
| abstract_inverted_index.our | 189 |
| abstract_inverted_index.the | 41, 55, 73, 77, 130, 142, 159, 163, 195 |
| abstract_inverted_index.also | 92 |
| abstract_inverted_index.deep | 11, 14, 123 |
| abstract_inverted_index.from | 10, 85, 93 |
| abstract_inverted_index.into | 141 |
| abstract_inverted_index.made | 3 |
| abstract_inverted_index.only | 84 |
| abstract_inverted_index.seen | 22 |
| abstract_inverted_index.that | 161, 191 |
| abstract_inverted_index.this | 106, 136, 170, 192, 200 |
| abstract_inverted_index.work | 107, 183 |
| abstract_inverted_index.MADRL | 44, 127 |
| abstract_inverted_index.about | 122 |
| abstract_inverted_index.agent | 148 |
| abstract_inverted_index.among | 69 |
| abstract_inverted_index.delve | 140 |
| abstract_inverted_index.first | 118 |
| abstract_inverted_index.large | 87 |
| abstract_inverted_index.other | 33, 94 |
| abstract_inverted_index.posed | 144 |
| abstract_inverted_index.prior | 104 |
| abstract_inverted_index.space | 80 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.(MAS), | 58 |
| abstract_inverted_index.MADRL, | 36 |
| abstract_inverted_index.MADRL. | 116 |
| abstract_inverted_index.agents | 90, 98 |
| abstract_inverted_index.arises | 82 |
| abstract_inverted_index.field, | 201 |
| abstract_inverted_index.future | 182 |
| abstract_inverted_index.handle | 76 |
| abstract_inverted_index.issues | 134 |
| abstract_inverted_index.number | 88 |
| abstract_inverted_index.potent | 61 |
| abstract_inverted_index.recent | 7 |
| abstract_inverted_index.stands | 49 |
| abstract_inverted_index.survey | 193 |
| abstract_inverted_index.system | 57 |
| abstract_inverted_index.tasks, | 25 |
| abstract_inverted_index.years. | 8 |
| abstract_inverted_index.(MADRL) | 17 |
| abstract_inverted_index.against | 154 |
| abstract_inverted_index.agents. | 70 |
| abstract_inverted_index.complex | 46 |
| abstract_inverted_index.discuss | 173 |
| abstract_inverted_index.domain. | 137 |
| abstract_inverted_index.factors | 95 |
| abstract_inverted_index.improve | 66 |
| abstract_inverted_index.issues. | 186 |
| abstract_inverted_index.methods | 160 |
| abstract_inverted_index.outline | 178 |
| abstract_inverted_index.related | 96 |
| abstract_inverted_index.remains | 38 |
| abstract_inverted_index.strides | 5 |
| abstract_inverted_index.survey, | 171 |
| abstract_inverted_index.tabular | 24 |
| abstract_inverted_index.trends, | 176 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.arousing | 26 |
| abstract_inverted_index.capacity | 74 |
| abstract_inverted_index.compared | 31 |
| abstract_inverted_index.concerns | 114 |
| abstract_inverted_index.conclude | 169 |
| abstract_inverted_index.contrast | 102 |
| abstract_inverted_index.enhances | 194 |
| abstract_inverted_index.identify | 175 |
| abstract_inverted_index.impeding | 40 |
| abstract_inverted_index.in-depth | 207 |
| abstract_inverted_index.learning | 1, 16, 68, 125 |
| abstract_inverted_index.offering | 59 |
| abstract_inverted_index.possible | 179 |
| abstract_inverted_index.problems | 143 |
| abstract_inverted_index.provides | 108 |
| abstract_inverted_index.research | 28 |
| abstract_inverted_index.resource | 205 |
| abstract_inverted_index.scalable | 166 |
| abstract_inverted_index.surveys, | 105 |
| abstract_inverted_index.valuable | 204 |
| abstract_inverted_index.attribute | 53 |
| abstract_inverted_index.elaborate | 157 |
| abstract_inverted_index.evolution | 164 |
| abstract_inverted_index.examining | 147 |
| abstract_inverted_index.interest. | 29 |
| abstract_inverted_index.introduce | 119 |
| abstract_inverted_index.knowledge | 121 |
| abstract_inverted_index.learning, | 12 |
| abstract_inverted_index.providing | 202 |
| abstract_inverted_index.Benefiting | 9 |
| abstract_inverted_index.aspiration | 190 |
| abstract_inverted_index.challenges | 34 |
| abstract_inverted_index.collective | 67 |
| abstract_inverted_index.directions | 180 |
| abstract_inverted_index.exposition | 111 |
| abstract_inverted_index.increasing | 78 |
| abstract_inverted_index.robustness | 153 |
| abstract_inverted_index.scenarios. | 47 |
| abstract_inverted_index.tremendous | 27 |
| abstract_inverted_index.underscore | 129 |
| abstract_inverted_index.understand | 64 |
| abstract_inverted_index.Multi-agent | 0 |
| abstract_inverted_index.Scalability | 48 |
| abstract_inverted_index.algorithms. | 167 |
| abstract_inverted_index.application | 42 |
| abstract_inverted_index.challenges, | 174 |
| abstract_inverted_index.complexity, | 149, 151 |
| abstract_inverted_index.demonstrate | 162 |
| abstract_inverted_index.encompasses | 72 |
| abstract_inverted_index.environment | 150 |
| abstract_inverted_index.limitations | 21 |
| abstract_inverted_index.multi-agent | 13, 56 |
| abstract_inverted_index.researchers | 198 |
| abstract_inverted_index.scalability | 37, 113, 133, 185 |
| abstract_inverted_index.significant | 4 |
| abstract_inverted_index.traditional | 20 |
| abstract_inverted_index.transcended | 19 |
| abstract_inverted_index.environment. | 100 |
| abstract_inverted_index.exploration. | 208 |
| abstract_inverted_index.foundational | 52, 120 |
| abstract_inverted_index.scalability, | 146 |
| abstract_inverted_index.state-action | 79 |
| abstract_inverted_index.Subsequently, | 138 |
| abstract_inverted_index.comprehensive | 110 |
| abstract_inverted_index.perturbation. | 155 |
| abstract_inverted_index.reinforcement | 15, 124 |
| abstract_inverted_index.understanding | 196 |
| abstract_inverted_index.distinctiveness | 131 |
| abstract_inverted_index.underemphasized, | 39 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.96400287 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |