Scan-Adaptive MRI Undersampling Using Neighbor-based Optimization (SUNO) Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.09799
Accelerated MRI involves collecting partial $k$-space measurements to reduce acquisition time, patient discomfort, and motion artifacts, and typically uses regular undersampling patterns or human-designed schemes. Recent works have studied population-adaptive sampling patterns learned from a group of patients (or scans). However, such patterns can be sub-optimal for individual scans, as they may fail to capture scan or slice-specific details, and their effectiveness can depend on the size and composition of the population. To overcome this issue, we propose a framework for jointly learning scan-adaptive Cartesian undersampling patterns and a corresponding reconstruction model from a training set. We use an alternating algorithm for learning the sampling patterns and the reconstruction model where we use an iterative coordinate descent (ICD) based offline optimization of scan-adaptive $k$-space sampling patterns for each example in the training set. A nearest neighbor search is then used to select the scan-adaptive sampling pattern at test time from initially acquired low-frequency $k$-space information. We applied the proposed framework (dubbed SUNO) to the fastMRI multi-coil knee and brain datasets, demonstrating improved performance over the currently used undersampling patterns at both $4\times$ and $8\times$ acceleration factors in terms of both visual quality and quantitative metrics. The code for the proposed framework is available at https://github.com/sidgautam95/adaptive-sampling-mri-suno.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.09799
- https://arxiv.org/pdf/2501.09799
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406603785
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406603785Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.09799Digital Object Identifier
- Title
-
Scan-Adaptive MRI Undersampling Using Neighbor-based Optimization (SUNO)Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-16Full publication date if available
- Authors
-
Siddhant Gautam, Angqi Li, Nicole Seiberlich, Jeffrey A. Fessler, Saiprasad RavishankarList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.09799Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.09799Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.09799Direct OA link when available
- Concepts
-
Undersampling, Computer science, Artificial intelligence, Pattern recognition (psychology)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406603785 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.09799 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.09799 |
| ids.openalex | https://openalex.org/W4406603785 |
| fwci | |
| type | preprint |
| title | Scan-Adaptive MRI Undersampling Using Neighbor-based Optimization (SUNO) |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9129999876022339 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136536468 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9762256145477295 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1225894 |
| concepts[0].display_name | Undersampling |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5494040846824646 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4032648205757141 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.3631848990917206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| keywords[0].id | https://openalex.org/keywords/undersampling |
| keywords[0].score | 0.9762256145477295 |
| keywords[0].display_name | Undersampling |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5494040846824646 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4032648205757141 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.3631848990917206 |
| keywords[3].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.09799 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.09799 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.09799 |
| locations[1].id | doi:10.48550/arxiv.2501.09799 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.09799 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030333220 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2226-8134 |
| authorships[0].author.display_name | Siddhant Gautam |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gautam, Siddhant |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108909511 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Angqi Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Angqi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036171819 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8356-5407 |
| authorships[2].author.display_name | Nicole Seiberlich |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Seiberlich, Nicole |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5027207271 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9998-3315 |
| authorships[3].author.display_name | Jeffrey A. Fessler |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fessler, Jeffrey A. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111562177 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Saiprasad Ravishankar |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ravishankar, Saiprasad |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.09799 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scan-Adaptive MRI Undersampling Using Neighbor-based Optimization (SUNO) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9129999876022339 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2109073422, https://openalex.org/W2887783772, https://openalex.org/W2101754595, https://openalex.org/W4249381695, https://openalex.org/W2534887053, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.09799 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.09799 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.09799 |
| primary_location.id | pmh:oai:arXiv.org:2501.09799 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.09799 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.09799 |
| publication_date | 2025-01-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 133 |
| abstract_inverted_index.a | 34, 78, 88, 93 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.We | 96, 155 |
| abstract_inverted_index.an | 98, 113 |
| abstract_inverted_index.as | 49 |
| abstract_inverted_index.at | 146, 179, 203 |
| abstract_inverted_index.be | 44 |
| abstract_inverted_index.in | 129, 186 |
| abstract_inverted_index.is | 137, 201 |
| abstract_inverted_index.of | 36, 69, 121, 188 |
| abstract_inverted_index.on | 64 |
| abstract_inverted_index.or | 22, 56 |
| abstract_inverted_index.to | 7, 53, 140, 162 |
| abstract_inverted_index.we | 76, 111 |
| abstract_inverted_index.(or | 38 |
| abstract_inverted_index.MRI | 1 |
| abstract_inverted_index.The | 195 |
| abstract_inverted_index.and | 13, 16, 59, 67, 87, 106, 167, 182, 192 |
| abstract_inverted_index.can | 43, 62 |
| abstract_inverted_index.for | 46, 80, 101, 126, 197 |
| abstract_inverted_index.may | 51 |
| abstract_inverted_index.the | 65, 70, 103, 107, 130, 142, 157, 163, 174, 198 |
| abstract_inverted_index.use | 97, 112 |
| abstract_inverted_index.both | 180, 189 |
| abstract_inverted_index.code | 196 |
| abstract_inverted_index.each | 127 |
| abstract_inverted_index.fail | 52 |
| abstract_inverted_index.from | 33, 92, 149 |
| abstract_inverted_index.have | 27 |
| abstract_inverted_index.knee | 166 |
| abstract_inverted_index.over | 173 |
| abstract_inverted_index.scan | 55 |
| abstract_inverted_index.set. | 95, 132 |
| abstract_inverted_index.size | 66 |
| abstract_inverted_index.such | 41 |
| abstract_inverted_index.test | 147 |
| abstract_inverted_index.then | 138 |
| abstract_inverted_index.they | 50 |
| abstract_inverted_index.this | 74 |
| abstract_inverted_index.time | 148 |
| abstract_inverted_index.used | 139, 176 |
| abstract_inverted_index.uses | 18 |
| abstract_inverted_index.(ICD) | 117 |
| abstract_inverted_index.SUNO) | 161 |
| abstract_inverted_index.based | 118 |
| abstract_inverted_index.brain | 168 |
| abstract_inverted_index.group | 35 |
| abstract_inverted_index.model | 91, 109 |
| abstract_inverted_index.terms | 187 |
| abstract_inverted_index.their | 60 |
| abstract_inverted_index.time, | 10 |
| abstract_inverted_index.where | 110 |
| abstract_inverted_index.works | 26 |
| abstract_inverted_index.Recent | 25 |
| abstract_inverted_index.depend | 63 |
| abstract_inverted_index.issue, | 75 |
| abstract_inverted_index.motion | 14 |
| abstract_inverted_index.reduce | 8 |
| abstract_inverted_index.scans, | 48 |
| abstract_inverted_index.search | 136 |
| abstract_inverted_index.select | 141 |
| abstract_inverted_index.visual | 190 |
| abstract_inverted_index.(dubbed | 160 |
| abstract_inverted_index.applied | 156 |
| abstract_inverted_index.capture | 54 |
| abstract_inverted_index.descent | 116 |
| abstract_inverted_index.example | 128 |
| abstract_inverted_index.factors | 185 |
| abstract_inverted_index.fastMRI | 164 |
| abstract_inverted_index.jointly | 81 |
| abstract_inverted_index.learned | 32 |
| abstract_inverted_index.nearest | 134 |
| abstract_inverted_index.offline | 119 |
| abstract_inverted_index.partial | 4 |
| abstract_inverted_index.patient | 11 |
| abstract_inverted_index.pattern | 145 |
| abstract_inverted_index.propose | 77 |
| abstract_inverted_index.quality | 191 |
| abstract_inverted_index.regular | 19 |
| abstract_inverted_index.scans). | 39 |
| abstract_inverted_index.studied | 28 |
| abstract_inverted_index.However, | 40 |
| abstract_inverted_index.acquired | 151 |
| abstract_inverted_index.details, | 58 |
| abstract_inverted_index.improved | 171 |
| abstract_inverted_index.involves | 2 |
| abstract_inverted_index.learning | 82, 102 |
| abstract_inverted_index.metrics. | 194 |
| abstract_inverted_index.neighbor | 135 |
| abstract_inverted_index.overcome | 73 |
| abstract_inverted_index.patients | 37 |
| abstract_inverted_index.patterns | 21, 31, 42, 86, 105, 125, 178 |
| abstract_inverted_index.proposed | 158, 199 |
| abstract_inverted_index.sampling | 30, 104, 124, 144 |
| abstract_inverted_index.schemes. | 24 |
| abstract_inverted_index.training | 94, 131 |
| abstract_inverted_index.$4\times$ | 181 |
| abstract_inverted_index.$8\times$ | 183 |
| abstract_inverted_index.$k$-space | 5, 123, 153 |
| abstract_inverted_index.Cartesian | 84 |
| abstract_inverted_index.algorithm | 100 |
| abstract_inverted_index.available | 202 |
| abstract_inverted_index.currently | 175 |
| abstract_inverted_index.datasets, | 169 |
| abstract_inverted_index.framework | 79, 159, 200 |
| abstract_inverted_index.initially | 150 |
| abstract_inverted_index.iterative | 114 |
| abstract_inverted_index.typically | 17 |
| abstract_inverted_index.artifacts, | 15 |
| abstract_inverted_index.collecting | 3 |
| abstract_inverted_index.coordinate | 115 |
| abstract_inverted_index.individual | 47 |
| abstract_inverted_index.multi-coil | 165 |
| abstract_inverted_index.Accelerated | 0 |
| abstract_inverted_index.acquisition | 9 |
| abstract_inverted_index.alternating | 99 |
| abstract_inverted_index.composition | 68 |
| abstract_inverted_index.discomfort, | 12 |
| abstract_inverted_index.performance | 172 |
| abstract_inverted_index.population. | 71 |
| abstract_inverted_index.sub-optimal | 45 |
| abstract_inverted_index.acceleration | 184 |
| abstract_inverted_index.information. | 154 |
| abstract_inverted_index.measurements | 6 |
| abstract_inverted_index.optimization | 120 |
| abstract_inverted_index.quantitative | 193 |
| abstract_inverted_index.corresponding | 89 |
| abstract_inverted_index.demonstrating | 170 |
| abstract_inverted_index.effectiveness | 61 |
| abstract_inverted_index.low-frequency | 152 |
| abstract_inverted_index.scan-adaptive | 83, 122, 143 |
| abstract_inverted_index.undersampling | 20, 85, 177 |
| abstract_inverted_index.human-designed | 23 |
| abstract_inverted_index.reconstruction | 90, 108 |
| abstract_inverted_index.slice-specific | 57 |
| abstract_inverted_index.population-adaptive | 29 |
| abstract_inverted_index.https://github.com/sidgautam95/adaptive-sampling-mri-suno. | 204 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |