Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/en17215293
Uncertainty is an important subject in optimization problems due to the unpredictable nature of real variables in the power system area, which can condition the solution’s accuracy. The effective modelling of stochastic variables can contribute to the reduction in losses in the system under evaluation and facilitate the implementation of an effective response in advance. To model uncertainty variables, the most extended technique is the scenario generation (SG) method. This method evaluates possible combinations of complete curves. Classical scenario generation methods are founded on probability distributions or robust stochastic optimization. This paper proposes a novel approach for constructing scenarios using the Ant Colony Optimization (ACO) algorithm, referred to as ACO-SG. This methodology does not require a previous statistical study of uncertainty data to generate new scenarios. A historical dataset and the desired number of scenarios are the inputs inserted into the algorithm. In the case study, the algorithm used historical data from the Savona Campus Smart Polygeneration Microgrid of the University of Genoa. The approach was applied to generate scenarios of photovoltaic generation and building consumption. The low values of the Euclidean distance were used in order to check the validity of the scenarios. Moreover, the error deviation of the scenarios generated with the goal of daily power were 1.77% and 0.144% for the cases of PV generation and building consumption, respectively. The different results for both cases are explained by the characteristics of the specific cases. Despite these different results, both were significantly low, which indicates the capability of the algorithm to generate any kind of feature within curves and its adaptability to any case of SG.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/en17215293
- OA Status
- gold
- Cited By
- 2
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403768254
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403768254Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/en17215293Digital Object Identifier
- Title
-
Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power SystemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-24Full publication date if available
- Authors
-
Daniel Fernández Valderrama, Juan Ignacio Guerrero, Carlos León, Michela RobbaList of authors in order
- Landing page
-
https://doi.org/10.3390/en17215293Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/en17215293Direct OA link when available
- Concepts
-
Ant colony optimization algorithms, Stochastic optimization, Ant colony, Mathematical optimization, Metaheuristic, Computer science, ANT, Mathematics, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403768254 |
|---|---|
| doi | https://doi.org/10.3390/en17215293 |
| ids.doi | https://doi.org/10.3390/en17215293 |
| ids.openalex | https://openalex.org/W4403768254 |
| fwci | 0.73833695 |
| type | article |
| title | Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems |
| biblio.issue | 21 |
| biblio.volume | 17 |
| biblio.last_page | 5293 |
| biblio.first_page | 5293 |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T10603 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Smart Grid Energy Management |
| topics[2].id | https://openalex.org/T10454 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.984499990940094 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Optimal Power Flow Distribution |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C40128228 |
| concepts[0].level | 2 |
| concepts[0].score | 0.802888035774231 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q460851 |
| concepts[0].display_name | Ant colony optimization algorithms |
| concepts[1].id | https://openalex.org/C194387892 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5205910205841064 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1747770 |
| concepts[1].display_name | Stochastic optimization |
| concepts[2].id | https://openalex.org/C60891933 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5199143290519714 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q796575 |
| concepts[2].display_name | Ant colony |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5073108077049255 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C109718341 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46341532468795776 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1385229 |
| concepts[4].display_name | Metaheuristic |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.44573450088500977 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C97467695 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4121079742908478 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q295802 |
| concepts[6].display_name | ANT |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.249823659658432 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/ant-colony-optimization-algorithms |
| keywords[0].score | 0.802888035774231 |
| keywords[0].display_name | Ant colony optimization algorithms |
| keywords[1].id | https://openalex.org/keywords/stochastic-optimization |
| keywords[1].score | 0.5205910205841064 |
| keywords[1].display_name | Stochastic optimization |
| keywords[2].id | https://openalex.org/keywords/ant-colony |
| keywords[2].score | 0.5199143290519714 |
| keywords[2].display_name | Ant colony |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.5073108077049255 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/metaheuristic |
| keywords[4].score | 0.46341532468795776 |
| keywords[4].display_name | Metaheuristic |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.44573450088500977 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/ant |
| keywords[6].score | 0.4121079742908478 |
| keywords[6].display_name | ANT |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.249823659658432 |
| keywords[7].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/en17215293 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S198098182 |
| locations[0].source.issn | 1996-1073 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1996-1073 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Energies |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Energies |
| locations[0].landing_page_url | https://doi.org/10.3390/en17215293 |
| locations[1].id | pmh:oai:doaj.org/article:98d9c84c74bf4882a3adca78d2d07177 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Energies, Vol 17, Iss 21, p 5293 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/98d9c84c74bf4882a3adca78d2d07177 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067521501 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Daniel Fernández Valderrama |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I83816512 |
| authorships[0].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | University of Genoa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Fernández Valderrama |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy |
| authorships[1].author.id | https://openalex.org/A5077409356 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3986-9267 |
| authorships[1].author.display_name | Juan Ignacio Guerrero |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79238269 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain |
| authorships[1].institutions[0].id | https://openalex.org/I79238269 |
| authorships[1].institutions[0].ror | https://ror.org/03yxnpp24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79238269 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad de Sevilla |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Juan Ignacio Guerrero Alonso |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain |
| authorships[2].author.id | https://openalex.org/A5079615454 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0043-8104 |
| authorships[2].author.display_name | Carlos León |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79238269 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain |
| authorships[2].institutions[0].id | https://openalex.org/I79238269 |
| authorships[2].institutions[0].ror | https://ror.org/03yxnpp24 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79238269 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad de Sevilla |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carlos León de Mora |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronic Technology, Escuela Politécnica Superior, University of Sevilla, 41011 Sevilla, Spain |
| authorships[3].author.id | https://openalex.org/A5039477899 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0032-9493 |
| authorships[3].author.display_name | Michela Robba |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83816512 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I83816512 |
| authorships[3].institutions[0].ror | https://ror.org/0107c5v14 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83816512 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Genoa |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Michela Robba |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, 16145 Genoa, Italy |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/en17215293 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scenario Generation Based on Ant Colony Optimization for Modelling Stochastic Variables in Power Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W1611875833, https://openalex.org/W1547053391, https://openalex.org/W1521781013, https://openalex.org/W4237535716, https://openalex.org/W1975009952, https://openalex.org/W1588949866, https://openalex.org/W46882622, https://openalex.org/W2110363036, https://openalex.org/W2347951034, https://openalex.org/W2462483068 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/en17215293 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S198098182 |
| best_oa_location.source.issn | 1996-1073 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1996-1073 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Energies |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Energies |
| best_oa_location.landing_page_url | https://doi.org/10.3390/en17215293 |
| primary_location.id | doi:10.3390/en17215293 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S198098182 |
| primary_location.source.issn | 1996-1073 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1996-1073 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Energies |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Energies |
| primary_location.landing_page_url | https://doi.org/10.3390/en17215293 |
| publication_date | 2024-10-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3116607398, https://openalex.org/W4290829870, https://openalex.org/W4308873185, https://openalex.org/W2905558533, https://openalex.org/W3092984114, https://openalex.org/W4317894230, https://openalex.org/W4310261168, https://openalex.org/W3094172153, https://openalex.org/W2991587459, https://openalex.org/W3209906733, https://openalex.org/W4200043908, https://openalex.org/W4226175458, https://openalex.org/W4385398816, https://openalex.org/W2159184708, https://openalex.org/W2100926730, https://openalex.org/W6840841917, https://openalex.org/W4311085604, https://openalex.org/W3207220151, https://openalex.org/W3174412339, https://openalex.org/W2074197819, https://openalex.org/W4283819853, https://openalex.org/W3157599146, https://openalex.org/W4210459377, https://openalex.org/W3088957233, https://openalex.org/W4324303457, https://openalex.org/W2982117190, https://openalex.org/W3169067735, https://openalex.org/W4309848176, https://openalex.org/W3154326173, https://openalex.org/W2147755528, https://openalex.org/W2507921495, https://openalex.org/W4377704418, https://openalex.org/W4286206446 |
| referenced_works_count | 33 |
| abstract_inverted_index.A | 126 |
| abstract_inverted_index.a | 93, 115 |
| abstract_inverted_index.In | 142 |
| abstract_inverted_index.PV | 216 |
| abstract_inverted_index.To | 55 |
| abstract_inverted_index.an | 2, 50 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.by | 230 |
| abstract_inverted_index.in | 5, 16, 38, 40, 53, 185 |
| abstract_inverted_index.is | 1, 63 |
| abstract_inverted_index.of | 13, 30, 49, 74, 119, 133, 158, 161, 170, 179, 191, 198, 205, 215, 233, 249, 256, 266 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.or | 86 |
| abstract_inverted_index.to | 9, 35, 107, 122, 167, 187, 252, 263 |
| abstract_inverted_index.Ant | 101 |
| abstract_inverted_index.SG. | 267 |
| abstract_inverted_index.The | 27, 163, 176, 222 |
| abstract_inverted_index.and | 45, 129, 173, 210, 218, 260 |
| abstract_inverted_index.any | 254, 264 |
| abstract_inverted_index.are | 81, 135, 228 |
| abstract_inverted_index.can | 22, 33 |
| abstract_inverted_index.due | 8 |
| abstract_inverted_index.for | 96, 212, 225 |
| abstract_inverted_index.its | 261 |
| abstract_inverted_index.low | 177 |
| abstract_inverted_index.new | 124 |
| abstract_inverted_index.not | 113 |
| abstract_inverted_index.the | 10, 17, 24, 36, 41, 47, 59, 64, 100, 130, 136, 140, 143, 146, 152, 159, 180, 189, 192, 195, 199, 203, 213, 231, 234, 247, 250 |
| abstract_inverted_index.was | 165 |
| abstract_inverted_index.(SG) | 67 |
| abstract_inverted_index.This | 69, 90, 110 |
| abstract_inverted_index.both | 226, 241 |
| abstract_inverted_index.case | 144, 265 |
| abstract_inverted_index.data | 121, 150 |
| abstract_inverted_index.does | 112 |
| abstract_inverted_index.from | 151 |
| abstract_inverted_index.goal | 204 |
| abstract_inverted_index.into | 139 |
| abstract_inverted_index.kind | 255 |
| abstract_inverted_index.low, | 244 |
| abstract_inverted_index.most | 60 |
| abstract_inverted_index.real | 14 |
| abstract_inverted_index.used | 148, 184 |
| abstract_inverted_index.were | 183, 208, 242 |
| abstract_inverted_index.with | 202 |
| abstract_inverted_index.(ACO) | 104 |
| abstract_inverted_index.1.77% | 209 |
| abstract_inverted_index.Smart | 155 |
| abstract_inverted_index.area, | 20 |
| abstract_inverted_index.cases | 214, 227 |
| abstract_inverted_index.check | 188 |
| abstract_inverted_index.daily | 206 |
| abstract_inverted_index.error | 196 |
| abstract_inverted_index.model | 56 |
| abstract_inverted_index.novel | 94 |
| abstract_inverted_index.order | 186 |
| abstract_inverted_index.paper | 91 |
| abstract_inverted_index.power | 18, 207 |
| abstract_inverted_index.study | 118 |
| abstract_inverted_index.these | 238 |
| abstract_inverted_index.under | 43 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.which | 21, 245 |
| abstract_inverted_index.0.144% | 211 |
| abstract_inverted_index.Campus | 154 |
| abstract_inverted_index.Colony | 102 |
| abstract_inverted_index.Genoa. | 162 |
| abstract_inverted_index.Savona | 153 |
| abstract_inverted_index.cases. | 236 |
| abstract_inverted_index.curves | 259 |
| abstract_inverted_index.inputs | 137 |
| abstract_inverted_index.losses | 39 |
| abstract_inverted_index.method | 70 |
| abstract_inverted_index.nature | 12 |
| abstract_inverted_index.number | 132 |
| abstract_inverted_index.robust | 87 |
| abstract_inverted_index.study, | 145 |
| abstract_inverted_index.system | 19, 42 |
| abstract_inverted_index.values | 178 |
| abstract_inverted_index.within | 258 |
| abstract_inverted_index.ACO-SG. | 109 |
| abstract_inverted_index.Despite | 237 |
| abstract_inverted_index.applied | 166 |
| abstract_inverted_index.curves. | 76 |
| abstract_inverted_index.dataset | 128 |
| abstract_inverted_index.desired | 131 |
| abstract_inverted_index.feature | 257 |
| abstract_inverted_index.founded | 82 |
| abstract_inverted_index.method. | 68 |
| abstract_inverted_index.methods | 80 |
| abstract_inverted_index.require | 114 |
| abstract_inverted_index.results | 224 |
| abstract_inverted_index.subject | 4 |
| abstract_inverted_index.advance. | 54 |
| abstract_inverted_index.approach | 95, 164 |
| abstract_inverted_index.building | 174, 219 |
| abstract_inverted_index.complete | 75 |
| abstract_inverted_index.distance | 182 |
| abstract_inverted_index.extended | 61 |
| abstract_inverted_index.generate | 123, 168, 253 |
| abstract_inverted_index.inserted | 138 |
| abstract_inverted_index.possible | 72 |
| abstract_inverted_index.previous | 116 |
| abstract_inverted_index.problems | 7 |
| abstract_inverted_index.proposes | 92 |
| abstract_inverted_index.referred | 106 |
| abstract_inverted_index.response | 52 |
| abstract_inverted_index.results, | 240 |
| abstract_inverted_index.scenario | 65, 78 |
| abstract_inverted_index.specific | 235 |
| abstract_inverted_index.validity | 190 |
| abstract_inverted_index.Classical | 77 |
| abstract_inverted_index.Euclidean | 181 |
| abstract_inverted_index.Microgrid | 157 |
| abstract_inverted_index.Moreover, | 194 |
| abstract_inverted_index.accuracy. | 26 |
| abstract_inverted_index.algorithm | 147, 251 |
| abstract_inverted_index.condition | 23 |
| abstract_inverted_index.deviation | 197 |
| abstract_inverted_index.different | 223, 239 |
| abstract_inverted_index.effective | 28, 51 |
| abstract_inverted_index.evaluates | 71 |
| abstract_inverted_index.explained | 229 |
| abstract_inverted_index.generated | 201 |
| abstract_inverted_index.important | 3 |
| abstract_inverted_index.indicates | 246 |
| abstract_inverted_index.modelling | 29 |
| abstract_inverted_index.reduction | 37 |
| abstract_inverted_index.scenarios | 98, 134, 169, 200 |
| abstract_inverted_index.technique | 62 |
| abstract_inverted_index.variables | 15, 32 |
| abstract_inverted_index.University | 160 |
| abstract_inverted_index.algorithm, | 105 |
| abstract_inverted_index.algorithm. | 141 |
| abstract_inverted_index.capability | 248 |
| abstract_inverted_index.contribute | 34 |
| abstract_inverted_index.evaluation | 44 |
| abstract_inverted_index.facilitate | 46 |
| abstract_inverted_index.generation | 66, 79, 172, 217 |
| abstract_inverted_index.historical | 127, 149 |
| abstract_inverted_index.scenarios. | 125, 193 |
| abstract_inverted_index.stochastic | 31, 88 |
| abstract_inverted_index.variables, | 58 |
| abstract_inverted_index.Uncertainty | 0 |
| abstract_inverted_index.methodology | 111 |
| abstract_inverted_index.probability | 84 |
| abstract_inverted_index.statistical | 117 |
| abstract_inverted_index.uncertainty | 57, 120 |
| abstract_inverted_index.Optimization | 103 |
| abstract_inverted_index.adaptability | 262 |
| abstract_inverted_index.combinations | 73 |
| abstract_inverted_index.constructing | 97 |
| abstract_inverted_index.consumption, | 220 |
| abstract_inverted_index.consumption. | 175 |
| abstract_inverted_index.optimization | 6 |
| abstract_inverted_index.photovoltaic | 171 |
| abstract_inverted_index.solution’s | 25 |
| abstract_inverted_index.distributions | 85 |
| abstract_inverted_index.optimization. | 89 |
| abstract_inverted_index.respectively. | 221 |
| abstract_inverted_index.significantly | 243 |
| abstract_inverted_index.unpredictable | 11 |
| abstract_inverted_index.Polygeneration | 156 |
| abstract_inverted_index.implementation | 48 |
| abstract_inverted_index.characteristics | 232 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5067521501 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I83816512 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.69704631 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |