SCOPE: Structural Continuity Preservation for Medical Image Segmentation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2304.14572
Although the preservation of shape continuity and physiological anatomy is a natural assumption in the segmentation of medical images, it is often neglected by deep learning methods that mostly aim for the statistical modeling of input data as pixels rather than interconnected structures. In biological structures, however, organs are not separate entities; for example, in reality, a severed vessel is an indication of an underlying problem, but traditional segmentation models are not designed to strictly enforce the continuity of anatomy, potentially leading to inaccurate medical diagnoses. To address this issue, we propose a graph-based approach that enforces the continuity and connectivity of anatomical topology in medical images. Our method encodes the continuity of shapes as a graph constraint, ensuring that the network's predictions maintain this continuity. We evaluate our method on two public benchmarks on retinal vessel segmentation, showing significant improvements in connectivity metrics compared to traditional methods while getting better or on-par performance on segmentation metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2304.14572
- https://arxiv.org/pdf/2304.14572
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367623664
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367623664Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2304.14572Digital Object Identifier
- Title
-
SCOPE: Structural Continuity Preservation for Medical Image SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-28Full publication date if available
- Authors
-
Yousef Yeganeh, Azade Farshad, Goktug Guevercin, Amr Abu-zer, Rui Xiao, Yongjian Tang, Ehsan Adeli, Nassir NavabList of authors in order
- Landing page
-
https://arxiv.org/abs/2304.14572Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2304.14572Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2304.14572Direct OA link when available
- Concepts
-
Segmentation, Computer science, Artificial intelligence, Pixel, Constraint (computer-aided design), Scope (computer science), Graph, Image segmentation, Computer vision, Image (mathematics), Medical diagnosis, Cut, Theoretical computer science, Mathematics, Medicine, Pathology, Programming language, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367623664 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2304.14572 |
| ids.doi | https://doi.org/10.48550/arxiv.2304.14572 |
| ids.openalex | https://openalex.org/W4367623664 |
| fwci | |
| type | preprint |
| title | SCOPE: Structural Continuity Preservation for Medical Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11438 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Retinal Imaging and Analysis |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9883000254631042 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10227 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Acute Ischemic Stroke Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7799711227416992 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7175723314285278 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5857642889022827 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.558287501335144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C2776036281 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5348474383354187 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[4].display_name | Constraint (computer-aided design) |
| concepts[5].id | https://openalex.org/C2778012447 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5249747633934021 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1034415 |
| concepts[5].display_name | Scope (computer science) |
| concepts[6].id | https://openalex.org/C132525143 |
| concepts[6].level | 2 |
| concepts[6].score | 0.519568681716919 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[6].display_name | Graph |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4994516372680664 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4926753640174866 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C115961682 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4746090769767761 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[9].display_name | Image (mathematics) |
| concepts[10].id | https://openalex.org/C534262118 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43089181184768677 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q177719 |
| concepts[10].display_name | Medical diagnosis |
| concepts[11].id | https://openalex.org/C5134670 |
| concepts[11].level | 4 |
| concepts[11].score | 0.4276611804962158 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1626444 |
| concepts[11].display_name | Cut |
| concepts[12].id | https://openalex.org/C80444323 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2630186975002289 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[12].display_name | Theoretical computer science |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15233591198921204 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07526618242263794 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7799711227416992 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7175723314285278 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5857642889022827 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.558287501335144 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/constraint |
| keywords[4].score | 0.5348474383354187 |
| keywords[4].display_name | Constraint (computer-aided design) |
| keywords[5].id | https://openalex.org/keywords/scope |
| keywords[5].score | 0.5249747633934021 |
| keywords[5].display_name | Scope (computer science) |
| keywords[6].id | https://openalex.org/keywords/graph |
| keywords[6].score | 0.519568681716919 |
| keywords[6].display_name | Graph |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.4994516372680664 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4926753640174866 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/image |
| keywords[9].score | 0.4746090769767761 |
| keywords[9].display_name | Image (mathematics) |
| keywords[10].id | https://openalex.org/keywords/medical-diagnosis |
| keywords[10].score | 0.43089181184768677 |
| keywords[10].display_name | Medical diagnosis |
| keywords[11].id | https://openalex.org/keywords/cut |
| keywords[11].score | 0.4276611804962158 |
| keywords[11].display_name | Cut |
| keywords[12].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[12].score | 0.2630186975002289 |
| keywords[12].display_name | Theoretical computer science |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.15233591198921204 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.07526618242263794 |
| keywords[14].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2304.14572 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2304.14572 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2304.14572 |
| locations[1].id | doi:10.48550/arxiv.2304.14572 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2304.14572 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5066823034 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yousef Yeganeh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yeganeh, Yousef |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014777005 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1080-1587 |
| authorships[1].author.display_name | Azade Farshad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Farshad, Azade |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070928933 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Goktug Guevercin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guevercin, Goktug |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070020760 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Amr Abu-zer |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Abu-zer, Amr |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101872367 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6278-6825 |
| authorships[4].author.display_name | Rui Xiao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiao, Rui |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5050053046 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2223-6420 |
| authorships[5].author.display_name | Yongjian Tang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tang, Yongjian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5015355317 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0579-7763 |
| authorships[6].author.display_name | Ehsan Adeli |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Adeli, Ehsan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5046896448 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Nassir Navab |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Navab, Nassir |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2304.14572 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-05-02T00:00:00 |
| display_name | SCOPE: Structural Continuity Preservation for Medical Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11438 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Retinal Imaging and Analysis |
| related_works | https://openalex.org/W4249377076, https://openalex.org/W2375137989, https://openalex.org/W2010171670, https://openalex.org/W2109407305, https://openalex.org/W2032319136, https://openalex.org/W1582388844, https://openalex.org/W2088651901, https://openalex.org/W2897997384, https://openalex.org/W1544828638, https://openalex.org/W2049858394 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2304.14572 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2304.14572 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2304.14572 |
| primary_location.id | pmh:oai:arXiv.org:2304.14572 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2304.14572 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2304.14572 |
| publication_date | 2023-04-28 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 56, 92, 115 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.We | 126 |
| abstract_inverted_index.an | 60, 63 |
| abstract_inverted_index.as | 37, 114 |
| abstract_inverted_index.by | 23 |
| abstract_inverted_index.in | 13, 54, 104, 141 |
| abstract_inverted_index.is | 9, 20, 59 |
| abstract_inverted_index.it | 19 |
| abstract_inverted_index.of | 3, 16, 34, 62, 78, 101, 112 |
| abstract_inverted_index.on | 130, 134, 154 |
| abstract_inverted_index.or | 151 |
| abstract_inverted_index.to | 73, 82, 145 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.Our | 107 |
| abstract_inverted_index.aim | 29 |
| abstract_inverted_index.and | 6, 99 |
| abstract_inverted_index.are | 48, 70 |
| abstract_inverted_index.but | 66 |
| abstract_inverted_index.for | 30, 52 |
| abstract_inverted_index.not | 49, 71 |
| abstract_inverted_index.our | 128 |
| abstract_inverted_index.the | 1, 14, 31, 76, 97, 110, 120 |
| abstract_inverted_index.two | 131 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.deep | 24 |
| abstract_inverted_index.than | 40 |
| abstract_inverted_index.that | 27, 95, 119 |
| abstract_inverted_index.this | 88, 124 |
| abstract_inverted_index.graph | 116 |
| abstract_inverted_index.input | 35 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.shape | 4 |
| abstract_inverted_index.while | 148 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.issue, | 89 |
| abstract_inverted_index.method | 108, 129 |
| abstract_inverted_index.models | 69 |
| abstract_inverted_index.mostly | 28 |
| abstract_inverted_index.on-par | 152 |
| abstract_inverted_index.organs | 47 |
| abstract_inverted_index.pixels | 38 |
| abstract_inverted_index.public | 132 |
| abstract_inverted_index.rather | 39 |
| abstract_inverted_index.shapes | 113 |
| abstract_inverted_index.vessel | 58, 136 |
| abstract_inverted_index.address | 87 |
| abstract_inverted_index.anatomy | 8 |
| abstract_inverted_index.encodes | 109 |
| abstract_inverted_index.enforce | 75 |
| abstract_inverted_index.getting | 149 |
| abstract_inverted_index.images, | 18 |
| abstract_inverted_index.images. | 106 |
| abstract_inverted_index.leading | 81 |
| abstract_inverted_index.medical | 17, 84, 105 |
| abstract_inverted_index.methods | 26, 147 |
| abstract_inverted_index.metrics | 143 |
| abstract_inverted_index.natural | 11 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.retinal | 135 |
| abstract_inverted_index.severed | 57 |
| abstract_inverted_index.showing | 138 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.anatomy, | 79 |
| abstract_inverted_index.approach | 94 |
| abstract_inverted_index.compared | 144 |
| abstract_inverted_index.designed | 72 |
| abstract_inverted_index.enforces | 96 |
| abstract_inverted_index.ensuring | 118 |
| abstract_inverted_index.evaluate | 127 |
| abstract_inverted_index.example, | 53 |
| abstract_inverted_index.however, | 46 |
| abstract_inverted_index.learning | 25 |
| abstract_inverted_index.maintain | 123 |
| abstract_inverted_index.metrics. | 156 |
| abstract_inverted_index.modeling | 33 |
| abstract_inverted_index.problem, | 65 |
| abstract_inverted_index.reality, | 55 |
| abstract_inverted_index.separate | 50 |
| abstract_inverted_index.strictly | 74 |
| abstract_inverted_index.topology | 103 |
| abstract_inverted_index.entities; | 51 |
| abstract_inverted_index.neglected | 22 |
| abstract_inverted_index.network's | 121 |
| abstract_inverted_index.anatomical | 102 |
| abstract_inverted_index.assumption | 12 |
| abstract_inverted_index.benchmarks | 133 |
| abstract_inverted_index.biological | 44 |
| abstract_inverted_index.continuity | 5, 77, 98, 111 |
| abstract_inverted_index.diagnoses. | 85 |
| abstract_inverted_index.inaccurate | 83 |
| abstract_inverted_index.indication | 61 |
| abstract_inverted_index.underlying | 64 |
| abstract_inverted_index.constraint, | 117 |
| abstract_inverted_index.continuity. | 125 |
| abstract_inverted_index.graph-based | 93 |
| abstract_inverted_index.performance | 153 |
| abstract_inverted_index.potentially | 80 |
| abstract_inverted_index.predictions | 122 |
| abstract_inverted_index.significant | 139 |
| abstract_inverted_index.statistical | 32 |
| abstract_inverted_index.structures, | 45 |
| abstract_inverted_index.structures. | 42 |
| abstract_inverted_index.traditional | 67, 146 |
| abstract_inverted_index.connectivity | 100, 142 |
| abstract_inverted_index.improvements | 140 |
| abstract_inverted_index.preservation | 2 |
| abstract_inverted_index.segmentation | 15, 68, 155 |
| abstract_inverted_index.physiological | 7 |
| abstract_inverted_index.segmentation, | 137 |
| abstract_inverted_index.interconnected | 41 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |