SCoRD: Subject-Conditional Relation Detection with Text-Augmented Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.12910
We propose Subject-Conditional Relation Detection SCoRD, where conditioned on an input subject, the goal is to predict all its relations to other objects in a scene along with their locations. Based on the Open Images dataset, we propose a challenging OIv6-SCoRD benchmark such that the training and testing splits have a distribution shift in terms of the occurrence statistics of $\langle$subject, relation, object$\rangle$ triplets. To solve this problem, we propose an auto-regressive model that given a subject, it predicts its relations, objects, and object locations by casting this output as a sequence of tokens. First, we show that previous scene-graph prediction methods fail to produce as exhaustive an enumeration of relation-object pairs when conditioned on a subject on this benchmark. Particularly, we obtain a recall@3 of 83.8% for our relation-object predictions compared to the 49.75% obtained by a recent scene graph detector. Then, we show improved generalization on both relation-object and object-box predictions by leveraging during training relation-object pairs obtained automatically from textual captions and for which no object-box annotations are available. Particularly, for $\langle$subject, relation, object$\rangle$ triplets for which no object locations are available during training, we are able to obtain a recall@3 of 33.80% for relation-object pairs and 26.75% for their box locations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.12910
- https://arxiv.org/pdf/2308.12910
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386185526
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386185526Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.12910Digital Object Identifier
- Title
-
SCoRD: Subject-Conditional Relation Detection with Text-Augmented DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-24Full publication date if available
- Authors
-
Ziyan Yang, Kushal Kafle, Zhe Lin, Scott Cohen, Zhihong Ding, Vicente OrdóñezList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.12910Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.12910Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.12910Direct OA link when available
- Concepts
-
Relation (database), Object (grammar), Subject (documents), Computer science, Generalization, Scene graph, Benchmark (surveying), Artificial intelligence, Graph, Object detection, Pattern recognition (psychology), Theoretical computer science, Mathematics, Data mining, Geodesy, Mathematical analysis, Rendering (computer graphics), Library science, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386185526 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.12910 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.12910 |
| ids.openalex | https://openalex.org/W4386185526 |
| fwci | |
| type | preprint |
| title | SCoRD: Subject-Conditional Relation Detection with Text-Augmented Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9797999858856201 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C25343380 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7832013964653015 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[0].display_name | Relation (database) |
| concepts[1].id | https://openalex.org/C2781238097 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7618929743766785 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[1].display_name | Object (grammar) |
| concepts[2].id | https://openalex.org/C2777855551 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6262668371200562 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12310021 |
| concepts[2].display_name | Subject (documents) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5829926133155823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C177148314 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5740597248077393 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[4].display_name | Generalization |
| concepts[5].id | https://openalex.org/C179372163 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5721027851104736 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1406181 |
| concepts[5].display_name | Scene graph |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5432863831520081 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5353347063064575 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5209782719612122 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C2776151529 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42557492852211 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[9].display_name | Object detection |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.36265239119529724 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C80444323 |
| concepts[11].level | 1 |
| concepts[11].score | 0.33612996339797974 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[11].display_name | Theoretical computer science |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3244864344596863 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.30093032121658325 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C205711294 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[16].display_name | Rendering (computer graphics) |
| concepts[17].id | https://openalex.org/C161191863 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q199655 |
| concepts[17].display_name | Library science |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/relation |
| keywords[0].score | 0.7832013964653015 |
| keywords[0].display_name | Relation (database) |
| keywords[1].id | https://openalex.org/keywords/object |
| keywords[1].score | 0.7618929743766785 |
| keywords[1].display_name | Object (grammar) |
| keywords[2].id | https://openalex.org/keywords/subject |
| keywords[2].score | 0.6262668371200562 |
| keywords[2].display_name | Subject (documents) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5829926133155823 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/generalization |
| keywords[4].score | 0.5740597248077393 |
| keywords[4].display_name | Generalization |
| keywords[5].id | https://openalex.org/keywords/scene-graph |
| keywords[5].score | 0.5721027851104736 |
| keywords[5].display_name | Scene graph |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.5432863831520081 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5353347063064575 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.5209782719612122 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/object-detection |
| keywords[9].score | 0.42557492852211 |
| keywords[9].display_name | Object detection |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.36265239119529724 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[11].score | 0.33612996339797974 |
| keywords[11].display_name | Theoretical computer science |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3244864344596863 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.30093032121658325 |
| keywords[13].display_name | Data mining |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.12910 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.12910 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.12910 |
| locations[1].id | doi:10.48550/arxiv.2308.12910 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.12910 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5069660758 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9030-2074 |
| authorships[0].author.display_name | Ziyan Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Ziyan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047193437 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0847-7861 |
| authorships[1].author.display_name | Kushal Kafle |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kafle, Kushal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101564904 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1154-9907 |
| authorships[2].author.display_name | Zhe Lin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Zhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5055156362 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3459-6899 |
| authorships[3].author.display_name | Scott Cohen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cohen, Scott |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5079713811 |
| authorships[4].author.orcid | https://orcid.org/0009-0001-1088-3260 |
| authorships[4].author.display_name | Zhihong Ding |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ding, Zhihong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5027328044 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Vicente Ordóñez |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ordonez, Vicente |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.12910 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SCoRD: Subject-Conditional Relation Detection with Text-Augmented Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W4287991909, https://openalex.org/W4390721878, https://openalex.org/W4387129494 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.12910 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.12910 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.12910 |
| primary_location.id | pmh:oai:arXiv.org:2308.12910 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.12910 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.12910 |
| publication_date | 2023-08-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 38, 50, 75, 90, 115, 123, 137, 192 |
| abstract_inverted_index.To | 64 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 9, 70, 107 |
| abstract_inverted_index.as | 89, 105 |
| abstract_inverted_index.by | 85, 136, 153 |
| abstract_inverted_index.in | 23, 53 |
| abstract_inverted_index.is | 14 |
| abstract_inverted_index.it | 77 |
| abstract_inverted_index.no | 167, 180 |
| abstract_inverted_index.of | 55, 59, 92, 109, 125, 194 |
| abstract_inverted_index.on | 8, 31, 114, 117, 147 |
| abstract_inverted_index.to | 15, 20, 103, 132, 190 |
| abstract_inverted_index.we | 36, 68, 95, 121, 143, 187 |
| abstract_inverted_index.all | 17 |
| abstract_inverted_index.and | 46, 82, 150, 164, 199 |
| abstract_inverted_index.are | 170, 183, 188 |
| abstract_inverted_index.box | 203 |
| abstract_inverted_index.for | 127, 165, 173, 178, 196, 201 |
| abstract_inverted_index.its | 18, 79 |
| abstract_inverted_index.our | 128 |
| abstract_inverted_index.the | 12, 32, 44, 56, 133 |
| abstract_inverted_index.Open | 33 |
| abstract_inverted_index.able | 189 |
| abstract_inverted_index.both | 148 |
| abstract_inverted_index.fail | 102 |
| abstract_inverted_index.from | 161 |
| abstract_inverted_index.goal | 13 |
| abstract_inverted_index.have | 49 |
| abstract_inverted_index.show | 96, 144 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.that | 43, 73, 97 |
| abstract_inverted_index.this | 66, 87, 118 |
| abstract_inverted_index.when | 112 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.83.8% | 126 |
| abstract_inverted_index.Based | 30 |
| abstract_inverted_index.Then, | 142 |
| abstract_inverted_index.along | 26 |
| abstract_inverted_index.given | 74 |
| abstract_inverted_index.graph | 140 |
| abstract_inverted_index.input | 10 |
| abstract_inverted_index.model | 72 |
| abstract_inverted_index.other | 21 |
| abstract_inverted_index.pairs | 111, 158, 198 |
| abstract_inverted_index.scene | 25, 139 |
| abstract_inverted_index.shift | 52 |
| abstract_inverted_index.solve | 65 |
| abstract_inverted_index.terms | 54 |
| abstract_inverted_index.their | 28, 202 |
| abstract_inverted_index.where | 6 |
| abstract_inverted_index.which | 166, 179 |
| abstract_inverted_index.26.75% | 200 |
| abstract_inverted_index.33.80% | 195 |
| abstract_inverted_index.49.75% | 134 |
| abstract_inverted_index.First, | 94 |
| abstract_inverted_index.Images | 34 |
| abstract_inverted_index.SCoRD, | 5 |
| abstract_inverted_index.during | 155, 185 |
| abstract_inverted_index.object | 83, 181 |
| abstract_inverted_index.obtain | 122, 191 |
| abstract_inverted_index.output | 88 |
| abstract_inverted_index.recent | 138 |
| abstract_inverted_index.splits | 48 |
| abstract_inverted_index.casting | 86 |
| abstract_inverted_index.methods | 101 |
| abstract_inverted_index.objects | 22 |
| abstract_inverted_index.predict | 16 |
| abstract_inverted_index.produce | 104 |
| abstract_inverted_index.propose | 1, 37, 69 |
| abstract_inverted_index.subject | 116 |
| abstract_inverted_index.testing | 47 |
| abstract_inverted_index.textual | 162 |
| abstract_inverted_index.tokens. | 93 |
| abstract_inverted_index.Relation | 3 |
| abstract_inverted_index.captions | 163 |
| abstract_inverted_index.compared | 131 |
| abstract_inverted_index.dataset, | 35 |
| abstract_inverted_index.improved | 145 |
| abstract_inverted_index.objects, | 81 |
| abstract_inverted_index.obtained | 135, 159 |
| abstract_inverted_index.predicts | 78 |
| abstract_inverted_index.previous | 98 |
| abstract_inverted_index.problem, | 67 |
| abstract_inverted_index.recall@3 | 124, 193 |
| abstract_inverted_index.sequence | 91 |
| abstract_inverted_index.subject, | 11, 76 |
| abstract_inverted_index.training | 45, 156 |
| abstract_inverted_index.triplets | 177 |
| abstract_inverted_index.Detection | 4 |
| abstract_inverted_index.available | 184 |
| abstract_inverted_index.benchmark | 41 |
| abstract_inverted_index.detector. | 141 |
| abstract_inverted_index.locations | 84, 182 |
| abstract_inverted_index.relation, | 61, 175 |
| abstract_inverted_index.relations | 19 |
| abstract_inverted_index.training, | 186 |
| abstract_inverted_index.triplets. | 63 |
| abstract_inverted_index.OIv6-SCoRD | 40 |
| abstract_inverted_index.available. | 171 |
| abstract_inverted_index.benchmark. | 119 |
| abstract_inverted_index.exhaustive | 106 |
| abstract_inverted_index.leveraging | 154 |
| abstract_inverted_index.locations. | 29, 204 |
| abstract_inverted_index.object-box | 151, 168 |
| abstract_inverted_index.occurrence | 57 |
| abstract_inverted_index.prediction | 100 |
| abstract_inverted_index.relations, | 80 |
| abstract_inverted_index.statistics | 58 |
| abstract_inverted_index.annotations | 169 |
| abstract_inverted_index.challenging | 39 |
| abstract_inverted_index.conditioned | 7, 113 |
| abstract_inverted_index.enumeration | 108 |
| abstract_inverted_index.predictions | 130, 152 |
| abstract_inverted_index.scene-graph | 99 |
| abstract_inverted_index.distribution | 51 |
| abstract_inverted_index.Particularly, | 120, 172 |
| abstract_inverted_index.automatically | 160 |
| abstract_inverted_index.generalization | 146 |
| abstract_inverted_index.auto-regressive | 71 |
| abstract_inverted_index.object$\rangle$ | 62, 176 |
| abstract_inverted_index.relation-object | 110, 129, 149, 157, 197 |
| abstract_inverted_index.$\langle$subject, | 60, 174 |
| abstract_inverted_index.Subject-Conditional | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |