MR sequence design to account for nonideal gradient performance
Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1002/mrm.70093
Purpose MRI systems are traditionally engineered to produce close to idealized performance, enabling a simplified pulse sequence design philosophy. An example of this is control of eddy currents produced by gradient fields; usually these are compensated by pre‐emphasizing demanded waveforms. This process typically happens invisibly to the pulse sequence designer, allowing them to assume achieved gradient waveforms will be as desired. Although convenient, this requires system specifications exposed to the end user to be substantially down‐rated, as pre‐emphasis adds an extra overhead to the waveforms. This strategy is undesirable for lower performance or resource‐limited hardware. Instead, we propose an optimization‐based method to design precompensated gradient waveforms that (i) explicitly respect hardware constraints and (ii) improve imaging performance by correcting k‐space samples directly. Methods Gradient waveforms are numerically optimized by including a model for system imperfections. This is investigated in simulation using an exponential eddy current model, then experimentally using an empirical gradient system transfer function on a 7T MRI system. Results Our proposed method discovers solutions that produce negligible reconstruction errors while satisfying gradient system limits, even when classic pre‐emphasis produces infeasible results. Substantial reduction in ghosting artifacts from echo‐planar imaging was observed, including an average reduction of 77% in ghost amplitude in phantoms. Conclusions This work demonstrates numerical optimization of gradient waveforms, yielding substantially improved image quality when given a model for system imperfections. Although the method as implemented has limited flexibility, it could enable more efficient hardware use and may prove particularly important for maximizing performance of lower‐cost systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/mrm.70093
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093
- OA Status
- hybrid
- References
- 28
- OpenAlex ID
- https://openalex.org/W4414389121
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414389121Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/mrm.70093Digital Object Identifier
- Title
-
MR sequence design to account for nonideal gradient performanceWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-22Full publication date if available
- Authors
-
Daniel J. West, Felix Glang, Jonathan Endres, David Leitão, Moritz Zaiß, Joseph V. Hajnal, Shaihan MalikList of authors in order
- Landing page
-
https://doi.org/10.1002/mrm.70093Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414389121 |
|---|---|
| doi | https://doi.org/10.1002/mrm.70093 |
| ids.doi | https://doi.org/10.1002/mrm.70093 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40977618 |
| ids.openalex | https://openalex.org/W4414389121 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | Q000379 |
| mesh[0].descriptor_ui | D008279 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | methods |
| mesh[0].descriptor_name | Magnetic Resonance Imaging |
| mesh[1].qualifier_ui | Q000295 |
| mesh[1].descriptor_ui | D008279 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | instrumentation |
| mesh[1].descriptor_name | Magnetic Resonance Imaging |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000465 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Algorithms |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D019047 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Phantoms, Imaging |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D003198 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Computer Simulation |
| mesh[5].qualifier_ui | Q000379 |
| mesh[5].descriptor_ui | D007091 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | methods |
| mesh[5].descriptor_name | Image Processing, Computer-Assisted |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D015203 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Reproducibility of Results |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D007089 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Image Enhancement |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D004867 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Equipment Design |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D008279 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Magnetic Resonance Imaging |
| mesh[11].qualifier_ui | Q000295 |
| mesh[11].descriptor_ui | D008279 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | instrumentation |
| mesh[11].descriptor_name | Magnetic Resonance Imaging |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D019047 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Phantoms, Imaging |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D003198 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Computer Simulation |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D007091 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Image Processing, Computer-Assisted |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D015203 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Reproducibility of Results |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D007089 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Image Enhancement |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D004867 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Equipment Design |
| type | article |
| title | |
| biblio.issue | 2 |
| biblio.volume | 95 |
| biblio.last_page | 1145 |
| biblio.first_page | 1135 |
| topics[0].id | https://openalex.org/T10378 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Advanced MRI Techniques and Applications |
| topics[1].id | https://openalex.org/T11304 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Advanced Neuroimaging Techniques and Applications |
| topics[2].id | https://openalex.org/T12603 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9965000152587891 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | NMR spectroscopy and applications |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| language | en |
| locations[0].id | doi:10.1002/mrm.70093 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S111160002 |
| locations[0].source.issn | 0740-3194, 1522-2594 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0740-3194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Magnetic Resonance in Medicine |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Magnetic Resonance in Medicine |
| locations[0].landing_page_url | https://doi.org/10.1002/mrm.70093 |
| locations[1].id | pmid:40977618 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Magnetic resonance in medicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40977618 |
| locations[2].id | pmh:oai:kclpure.kcl.ac.uk:publications/948d5a17-ca9b-47ab-a83a-d37994a2d0a9 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | West, D, Glang, F, Endres, J, Carramao Leitao, D M, Zaiss, M, Hajnal, J & Malik, S 2025, 'MR sequence design to account for non-ideal gradient performance', Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. https://doi.org/10.1002/mrm.70093 |
| locations[2].landing_page_url | https://kclpure.kcl.ac.uk/portal/en/publications/948d5a17-ca9b-47ab-a83a-d37994a2d0a9 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5021744832 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0246-5851 |
| authorships[0].author.display_name | Daniel J. West |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[0].affiliations[0].raw_affiliation_string | Imaging Physics & Engineering Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[0].institutions[0].id | https://openalex.org/I183935753 |
| authorships[0].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | King's College London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel J. West |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Imaging Physics & Engineering Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[1].author.id | https://openalex.org/A5049814327 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3506-4947 |
| authorships[1].author.display_name | Felix Glang |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210112925 |
| authorships[1].affiliations[0].raw_affiliation_string | Max‐Planck‐Institut fur Biologische Kybernetik Magnetic Resonance Center Tübingen Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210112925 |
| authorships[1].institutions[0].ror | https://ror.org/026nmvv73 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I149899117, https://openalex.org/I4210112925 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Max Planck Institute for Biological Cybernetics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Felix Glang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Max‐Planck‐Institut fur Biologische Kybernetik Magnetic Resonance Center Tübingen Germany |
| authorships[2].author.id | https://openalex.org/A5051669589 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-0908-4153 |
| authorships[2].author.display_name | Jonathan Endres |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210088053 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Neuroradiology, Erlangen University Hospital Institute of Neuroradiology, Erlangen, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210088053 |
| authorships[2].institutions[0].ror | https://ror.org/0030f2a11 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210088053 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Universitätsklinikum Erlangen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jonathan Endres |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Neuroradiology, Erlangen University Hospital Institute of Neuroradiology, Erlangen, Germany |
| authorships[3].author.id | https://openalex.org/A5086538883 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5853-8602 |
| authorships[3].author.display_name | David Leitão |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[3].affiliations[0].raw_affiliation_string | Imaging Physics & Engineering Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[3].institutions[0].id | https://openalex.org/I183935753 |
| authorships[3].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | King's College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Leitão |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Imaging Physics & Engineering Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[4].author.id | https://openalex.org/A5054149506 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9780-3616 |
| authorships[4].author.display_name | Moritz Zaiß |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210088053 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Neuroradiology, Erlangen University Hospital Institute of Neuroradiology, Erlangen, Germany |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I181369854 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Artificial Intelligence in Biomedical Engineering Friedrich‐Alexander‐Universität Erlangen‐Nurnberg Erlangen Germany |
| authorships[4].institutions[0].id | https://openalex.org/I181369854 |
| authorships[4].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[4].institutions[1].id | https://openalex.org/I4210088053 |
| authorships[4].institutions[1].ror | https://ror.org/0030f2a11 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210088053 |
| authorships[4].institutions[1].country_code | DE |
| authorships[4].institutions[1].display_name | Universitätsklinikum Erlangen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Moritz Zaiss |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Artificial Intelligence in Biomedical Engineering Friedrich‐Alexander‐Universität Erlangen‐Nurnberg Erlangen Germany, Institute of Neuroradiology, Erlangen University Hospital Institute of Neuroradiology, Erlangen, Germany |
| authorships[5].author.id | https://openalex.org/A5085446806 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2690-5495 |
| authorships[5].author.display_name | Joseph V. Hajnal |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[5].affiliations[0].raw_affiliation_string | Early Life Imaging Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[5].institutions[0].id | https://openalex.org/I183935753 |
| authorships[5].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | King's College London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Joseph V. Hajnal |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Early Life Imaging Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[6].author.id | https://openalex.org/A5029040770 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8925-9032 |
| authorships[6].author.display_name | Shaihan Malik |
| authorships[6].countries | GB |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I183935753 |
| authorships[6].affiliations[0].raw_affiliation_string | Early Life Imaging Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| authorships[6].institutions[0].id | https://openalex.org/I183935753 |
| authorships[6].institutions[0].ror | https://ror.org/0220mzb33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I183935753 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | King's College London |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Shaihan J. Malik |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Early Life Imaging Research Department School of Biomedical Engineering & Imaging Sciences, King's College London London UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-09-23T00:00:00 |
| display_name | |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-07T23:40:59.601060 |
| primary_topic.id | https://openalex.org/T10378 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Advanced MRI Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/mrm.70093 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S111160002 |
| best_oa_location.source.issn | 0740-3194, 1522-2594 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0740-3194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Magnetic Resonance in Medicine |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Magnetic Resonance in Medicine |
| best_oa_location.landing_page_url | https://doi.org/10.1002/mrm.70093 |
| primary_location.id | doi:10.1002/mrm.70093 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S111160002 |
| primary_location.source.issn | 0740-3194, 1522-2594 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0740-3194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Magnetic Resonance in Medicine |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.70093 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Magnetic Resonance in Medicine |
| primary_location.landing_page_url | https://doi.org/10.1002/mrm.70093 |
| publication_date | 2025-09-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2166997307, https://openalex.org/W1594287720, https://openalex.org/W2008847086, https://openalex.org/W2097151815, https://openalex.org/W2542442242, https://openalex.org/W2792347196, https://openalex.org/W4310705208, https://openalex.org/W2011084471, https://openalex.org/W3139256787, https://openalex.org/W2963098668, https://openalex.org/W4393983900, https://openalex.org/W2111388536, https://openalex.org/W2115769026, https://openalex.org/W2415524820, https://openalex.org/W2979999963, https://openalex.org/W2588677209, https://openalex.org/W1924772310, https://openalex.org/W4224237241, https://openalex.org/W3109344210, https://openalex.org/W1932583502, https://openalex.org/W4413303658, https://openalex.org/W4200041665, https://openalex.org/W2082924344, https://openalex.org/W3041942634, https://openalex.org/W3018639952, https://openalex.org/W4403439703, https://openalex.org/W2094117976, https://openalex.org/W2082025849 |
| referenced_works_count | 28 |
| abstract_inverted_index.a | 14, 131, 157, 221 |
| abstract_inverted_index.7T | 158 |
| abstract_inverted_index.An | 20 |
| abstract_inverted_index.an | 80, 99, 142, 150, 195 |
| abstract_inverted_index.as | 60, 77, 229 |
| abstract_inverted_index.be | 59, 74 |
| abstract_inverted_index.by | 30, 37, 118, 129 |
| abstract_inverted_index.in | 139, 186, 200, 203 |
| abstract_inverted_index.is | 24, 88, 137 |
| abstract_inverted_index.it | 234 |
| abstract_inverted_index.of | 22, 26, 198, 211, 249 |
| abstract_inverted_index.on | 156 |
| abstract_inverted_index.or | 93 |
| abstract_inverted_index.to | 7, 10, 46, 53, 69, 73, 83, 102 |
| abstract_inverted_index.we | 97 |
| abstract_inverted_index.(i) | 108 |
| abstract_inverted_index.77% | 199 |
| abstract_inverted_index.MRI | 2, 159 |
| abstract_inverted_index.Our | 162 |
| abstract_inverted_index.and | 113, 241 |
| abstract_inverted_index.are | 4, 35, 126 |
| abstract_inverted_index.end | 71 |
| abstract_inverted_index.for | 90, 133, 223, 246 |
| abstract_inverted_index.has | 231 |
| abstract_inverted_index.may | 242 |
| abstract_inverted_index.the | 47, 70, 84, 227 |
| abstract_inverted_index.use | 240 |
| abstract_inverted_index.was | 192 |
| abstract_inverted_index.(ii) | 114 |
| abstract_inverted_index.This | 41, 86, 136, 206 |
| abstract_inverted_index.adds | 79 |
| abstract_inverted_index.eddy | 27, 144 |
| abstract_inverted_index.even | 177 |
| abstract_inverted_index.from | 189 |
| abstract_inverted_index.more | 237 |
| abstract_inverted_index.that | 107, 167 |
| abstract_inverted_index.them | 52 |
| abstract_inverted_index.then | 147 |
| abstract_inverted_index.this | 23, 64 |
| abstract_inverted_index.user | 72 |
| abstract_inverted_index.when | 178, 219 |
| abstract_inverted_index.will | 58 |
| abstract_inverted_index.work | 207 |
| abstract_inverted_index.close | 9 |
| abstract_inverted_index.could | 235 |
| abstract_inverted_index.extra | 81 |
| abstract_inverted_index.ghost | 201 |
| abstract_inverted_index.given | 220 |
| abstract_inverted_index.image | 217 |
| abstract_inverted_index.lower | 91 |
| abstract_inverted_index.model | 132, 222 |
| abstract_inverted_index.prove | 243 |
| abstract_inverted_index.pulse | 16, 48 |
| abstract_inverted_index.these | 34 |
| abstract_inverted_index.using | 141, 149 |
| abstract_inverted_index.while | 172 |
| abstract_inverted_index.assume | 54 |
| abstract_inverted_index.design | 18, 103 |
| abstract_inverted_index.enable | 236 |
| abstract_inverted_index.errors | 171 |
| abstract_inverted_index.method | 101, 164, 228 |
| abstract_inverted_index.model, | 146 |
| abstract_inverted_index.system | 66, 134, 153, 175, 224 |
| abstract_inverted_index.Methods | 123 |
| abstract_inverted_index.Purpose | 1 |
| abstract_inverted_index.Results | 161 |
| abstract_inverted_index.average | 196 |
| abstract_inverted_index.classic | 179 |
| abstract_inverted_index.control | 25 |
| abstract_inverted_index.current | 145 |
| abstract_inverted_index.example | 21 |
| abstract_inverted_index.exposed | 68 |
| abstract_inverted_index.fields; | 32 |
| abstract_inverted_index.happens | 44 |
| abstract_inverted_index.imaging | 116, 191 |
| abstract_inverted_index.improve | 115 |
| abstract_inverted_index.limited | 232 |
| abstract_inverted_index.limits, | 176 |
| abstract_inverted_index.process | 42 |
| abstract_inverted_index.produce | 8, 168 |
| abstract_inverted_index.propose | 98 |
| abstract_inverted_index.quality | 218 |
| abstract_inverted_index.respect | 110 |
| abstract_inverted_index.samples | 121 |
| abstract_inverted_index.system. | 160 |
| abstract_inverted_index.systems | 3 |
| abstract_inverted_index.usually | 33 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 62, 226 |
| abstract_inverted_index.Gradient | 124 |
| abstract_inverted_index.Instead, | 96 |
| abstract_inverted_index.achieved | 55 |
| abstract_inverted_index.allowing | 51 |
| abstract_inverted_index.currents | 28 |
| abstract_inverted_index.demanded | 39 |
| abstract_inverted_index.desired. | 61 |
| abstract_inverted_index.enabling | 13 |
| abstract_inverted_index.function | 155 |
| abstract_inverted_index.ghosting | 187 |
| abstract_inverted_index.gradient | 31, 56, 105, 152, 174, 212 |
| abstract_inverted_index.hardware | 111, 239 |
| abstract_inverted_index.improved | 216 |
| abstract_inverted_index.overhead | 82 |
| abstract_inverted_index.produced | 29 |
| abstract_inverted_index.produces | 181 |
| abstract_inverted_index.proposed | 163 |
| abstract_inverted_index.requires | 65 |
| abstract_inverted_index.results. | 183 |
| abstract_inverted_index.sequence | 17, 49 |
| abstract_inverted_index.strategy | 87 |
| abstract_inverted_index.systems. | 251 |
| abstract_inverted_index.transfer | 154 |
| abstract_inverted_index.yielding | 214 |
| abstract_inverted_index.amplitude | 202 |
| abstract_inverted_index.artifacts | 188 |
| abstract_inverted_index.designer, | 50 |
| abstract_inverted_index.directly. | 122 |
| abstract_inverted_index.discovers | 165 |
| abstract_inverted_index.efficient | 238 |
| abstract_inverted_index.empirical | 151 |
| abstract_inverted_index.hardware. | 95 |
| abstract_inverted_index.idealized | 11 |
| abstract_inverted_index.important | 245 |
| abstract_inverted_index.including | 130, 194 |
| abstract_inverted_index.invisibly | 45 |
| abstract_inverted_index.k‐space | 120 |
| abstract_inverted_index.numerical | 209 |
| abstract_inverted_index.observed, | 193 |
| abstract_inverted_index.optimized | 128 |
| abstract_inverted_index.phantoms. | 204 |
| abstract_inverted_index.reduction | 185, 197 |
| abstract_inverted_index.solutions | 166 |
| abstract_inverted_index.typically | 43 |
| abstract_inverted_index.waveforms | 57, 106, 125 |
| abstract_inverted_index.correcting | 119 |
| abstract_inverted_index.engineered | 6 |
| abstract_inverted_index.explicitly | 109 |
| abstract_inverted_index.infeasible | 182 |
| abstract_inverted_index.maximizing | 247 |
| abstract_inverted_index.negligible | 169 |
| abstract_inverted_index.satisfying | 173 |
| abstract_inverted_index.simplified | 15 |
| abstract_inverted_index.simulation | 140 |
| abstract_inverted_index.waveforms, | 213 |
| abstract_inverted_index.waveforms. | 40, 85 |
| abstract_inverted_index.Conclusions | 205 |
| abstract_inverted_index.Substantial | 184 |
| abstract_inverted_index.compensated | 36 |
| abstract_inverted_index.constraints | 112 |
| abstract_inverted_index.convenient, | 63 |
| abstract_inverted_index.exponential | 143 |
| abstract_inverted_index.implemented | 230 |
| abstract_inverted_index.numerically | 127 |
| abstract_inverted_index.performance | 92, 117, 248 |
| abstract_inverted_index.philosophy. | 19 |
| abstract_inverted_index.undesirable | 89 |
| abstract_inverted_index.demonstrates | 208 |
| abstract_inverted_index.flexibility, | 233 |
| abstract_inverted_index.investigated | 138 |
| abstract_inverted_index.lower‐cost | 250 |
| abstract_inverted_index.optimization | 210 |
| abstract_inverted_index.particularly | 244 |
| abstract_inverted_index.performance, | 12 |
| abstract_inverted_index.down‐rated, | 76 |
| abstract_inverted_index.echo‐planar | 190 |
| abstract_inverted_index.substantially | 75, 215 |
| abstract_inverted_index.traditionally | 5 |
| abstract_inverted_index.experimentally | 148 |
| abstract_inverted_index.imperfections. | 135, 225 |
| abstract_inverted_index.precompensated | 104 |
| abstract_inverted_index.pre‐emphasis | 78, 180 |
| abstract_inverted_index.reconstruction | 170 |
| abstract_inverted_index.specifications | 67 |
| abstract_inverted_index.pre‐emphasizing | 38 |
| abstract_inverted_index.resource‐limited | 94 |
| abstract_inverted_index.optimization‐based | 100 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5029040770 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I183935753 |
| citation_normalized_percentile.value | 0.57378743 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |