PhenoVision : A framework for automating and delivering research‐ready plant phenology data from field images
Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/2041-210x.70081
Plant phenology plays a fundamental role in shaping ecosystems, and global change‐induced shifts in phenology have cascading impacts on species interactions and ecosystem structure and function. Detailed, high‐quality observations of when plants undergo seasonal transitions such as leaf‐out, flowering and fruiting are critical for tracking causes and consequences of phenology shifts, but these data are often sparse and biased globally. These data gaps limit broader generalizations and forecasting improvements in the face of continuing disturbance. One solution to closing such gaps is to document phenology on field images taken by public participants. iNaturalist, in particular, provides global‐scale research‐grade data and is expanding rapidly. Here we utilize over 53 million field images of plants and millions of human annotations from iNaturalist—data spanning all angiosperms and drawn from across the globe—to train a computer vision model (PhenoVision) to detect the presence of fruits and flowers. PhenoVision utilizes a vision transformer architecture pretrained with a masked autoencoder to improve classification success, and it achieves high accuracy on held‐out test images for flower (98.5%) and fruit presence (95%), as well as a high level of agreement with an expert annotator (98.6% for flowers and 90.4% for fruits). Key to producing research‐ready phenology data is post‐calibration tuning and validation focused on reducing noise inherent in field photographs, and maximizing the true positive rate. We also develop a standardized set of quality metrics and metadata so that results can be used effectively by the community. Finally, we showcase how this effort vastly increases phenology data coverage, including regions of the globe where data have been limited before. Our end products are tuned models, new data resources and an application streamlining discovery and use of those data for the broader research and management community. We close by discussing next steps, including automating phenology annotations, adding new phenology targets, for example leaf phenology, and further integration with other resources to form a global central database integrating all in situ plant phenology resources.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/2041-210x.70081
- OA Status
- gold
- Cited By
- 2
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411455167
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411455167Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/2041-210x.70081Digital Object Identifier
- Title
-
PhenoVision : A framework for automating and delivering research‐ready plant phenology data from field imagesWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-19Full publication date if available
- Authors
-
Russell Dinnage, Erin Grady, Nevyn Neal, John Deck, Ellen G. Denny, Ramona Walls, Carrie Seltzer, Robert Guralnick, Daijiang LiList of authors in order
- Landing page
-
https://doi.org/10.1111/2041-210x.70081Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1111/2041-210x.70081Direct OA link when available
- Concepts
-
Phenology, Metadata, Computer science, Data quality, Field (mathematics), Ecosystem, Ecology, Artificial intelligence, Biology, Mathematics, Engineering, Metric (unit), Pure mathematics, Operations management, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411455167 |
|---|---|
| doi | https://doi.org/10.1111/2041-210x.70081 |
| ids.doi | https://doi.org/10.1111/2041-210x.70081 |
| ids.openalex | https://openalex.org/W4411455167 |
| fwci | 10.10508735 |
| type | article |
| title | |
| biblio.issue | 8 |
| biblio.volume | 16 |
| biblio.last_page | 1780 |
| biblio.first_page | 1763 |
| grants[0].funder | https://openalex.org/F4320337398 |
| grants[0].award_id | DBI2223508 |
| grants[0].funder_display_name | Division of Biological Infrastructure |
| grants[1].funder | https://openalex.org/F4320337398 |
| grants[1].award_id | DBI2223512 |
| grants[1].funder_display_name | Division of Biological Infrastructure |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10895 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2302 |
| topics[1].subfield.display_name | Ecological Modeling |
| topics[1].display_name | Species Distribution and Climate Change |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.991599977016449 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| funders[0].id | https://openalex.org/F4320337398 |
| funders[0].ror | https://ror.org/04qn9mx93 |
| funders[0].display_name | Division of Biological Infrastructure |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| concepts[0].id | https://openalex.org/C51417038 |
| concepts[0].level | 2 |
| concepts[0].score | 0.764683723449707 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q272737 |
| concepts[0].display_name | Phenology |
| concepts[1].id | https://openalex.org/C93518851 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6661359071731567 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180160 |
| concepts[1].display_name | Metadata |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5240381360054016 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C24756922 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47279876470565796 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[3].display_name | Data quality |
| concepts[4].id | https://openalex.org/C9652623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4580605626106262 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[4].display_name | Field (mathematics) |
| concepts[5].id | https://openalex.org/C110872660 |
| concepts[5].level | 2 |
| concepts[5].score | 0.412492960691452 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[5].display_name | Ecosystem |
| concepts[6].id | https://openalex.org/C18903297 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3671576976776123 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[6].display_name | Ecology |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33834758400917053 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17186081409454346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11799755692481995 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.10378801822662354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C176217482 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[11].display_name | Metric (unit) |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| concepts[13].id | https://openalex.org/C21547014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[13].display_name | Operations management |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/phenology |
| keywords[0].score | 0.764683723449707 |
| keywords[0].display_name | Phenology |
| keywords[1].id | https://openalex.org/keywords/metadata |
| keywords[1].score | 0.6661359071731567 |
| keywords[1].display_name | Metadata |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5240381360054016 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-quality |
| keywords[3].score | 0.47279876470565796 |
| keywords[3].display_name | Data quality |
| keywords[4].id | https://openalex.org/keywords/field |
| keywords[4].score | 0.4580605626106262 |
| keywords[4].display_name | Field (mathematics) |
| keywords[5].id | https://openalex.org/keywords/ecosystem |
| keywords[5].score | 0.412492960691452 |
| keywords[5].display_name | Ecosystem |
| keywords[6].id | https://openalex.org/keywords/ecology |
| keywords[6].score | 0.3671576976776123 |
| keywords[6].display_name | Ecology |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.33834758400917053 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.17186081409454346 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.11799755692481995 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.10378801822662354 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1111/2041-210x.70081 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1131227 |
| locations[0].source.issn | 2041-210X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2041-210X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Methods in Ecology and Evolution |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Methods in Ecology and Evolution |
| locations[0].landing_page_url | https://doi.org/10.1111/2041-210x.70081 |
| locations[1].id | pmh:oai:doaj.org/article:cebacabcc93f43109792b70f89541ee7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Methods in Ecology and Evolution, Vol 16, Iss 8, Pp 1763-1780 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/cebacabcc93f43109792b70f89541ee7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5055388100 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0846-2819 |
| authorships[0].author.display_name | Russell Dinnage |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19700959 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Environment, Department of Biological Sciences Florida International University Miami Florida USA |
| authorships[0].institutions[0].id | https://openalex.org/I19700959 |
| authorships[0].institutions[0].ror | https://ror.org/02gz6gg07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I19700959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Florida International University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Russell Dinnage |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Environment, Department of Biological Sciences Florida International University Miami Florida USA |
| authorships[1].author.id | https://openalex.org/A5113472514 |
| authorships[1].author.orcid | https://orcid.org/0009-0001-5928-7515 |
| authorships[1].author.display_name | Erin Grady |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1313142568, https://openalex.org/I33213144 |
| authorships[1].affiliations[0].raw_affiliation_string | Florida Museum of Natural History University of Florida Gainesville Florida USA |
| authorships[1].institutions[0].id | https://openalex.org/I1313142568 |
| authorships[1].institutions[0].ror | https://ror.org/02pjdv450 |
| authorships[1].institutions[0].type | archive |
| authorships[1].institutions[0].lineage | https://openalex.org/I1313142568, https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Florida Museum of Natural History |
| authorships[1].institutions[1].id | https://openalex.org/I33213144 |
| authorships[1].institutions[1].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | University of Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Erin Grady |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Florida Museum of Natural History University of Florida Gainesville Florida USA |
| authorships[2].author.id | https://openalex.org/A5015669607 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nevyn Neal |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I138006243 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA |
| authorships[2].institutions[0].id | https://openalex.org/I138006243 |
| authorships[2].institutions[0].ror | https://ror.org/03m2x1q45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I138006243 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Arizona |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nevyn Neal |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA |
| authorships[3].author.id | https://openalex.org/A5007471579 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5905-1617 |
| authorships[3].author.display_name | John Deck |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[3].affiliations[0].raw_affiliation_string | Berkeley Natural History Museums University of California Berkeley California USA |
| authorships[3].institutions[0].id | https://openalex.org/I95457486 |
| authorships[3].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Berkeley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jonn Deck |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Berkeley Natural History Museums University of California Berkeley California USA |
| authorships[4].author.id | https://openalex.org/A5004865405 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2528-6394 |
| authorships[4].author.display_name | Ellen G. Denny |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I138006243 |
| authorships[4].affiliations[0].raw_affiliation_string | USA National Phenology Network, School of Natural Resources and the Environment University of Arizona Tucson Arizona USA |
| authorships[4].institutions[0].id | https://openalex.org/I138006243 |
| authorships[4].institutions[0].ror | https://ror.org/03m2x1q45 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I138006243 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Arizona |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ellen Denny |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | USA National Phenology Network, School of Natural Resources and the Environment University of Arizona Tucson Arizona USA |
| authorships[5].author.id | https://openalex.org/A5015253000 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8815-0078 |
| authorships[5].author.display_name | Ramona Walls |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[5].affiliations[0].raw_affiliation_string | Data Collaboration Center Critical Path Institute Tucson Arizona USA |
| authorships[5].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[5].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Critical Path Institute |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ramona Walls |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Data Collaboration Center Critical Path Institute Tucson Arizona USA |
| authorships[6].author.id | https://openalex.org/A5055130348 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2979-6589 |
| authorships[6].author.display_name | Carrie Seltzer |
| authorships[6].affiliations[0].raw_affiliation_string | iNaturalist San Rafael California USA |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Carrie Seltzer |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | iNaturalist San Rafael California USA |
| authorships[7].author.id | https://openalex.org/A5017811194 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6682-1504 |
| authorships[7].author.display_name | Robert Guralnick |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1313142568, https://openalex.org/I33213144 |
| authorships[7].affiliations[0].raw_affiliation_string | Florida Museum of Natural History University of Florida Gainesville Florida USA |
| authorships[7].institutions[0].id | https://openalex.org/I1313142568 |
| authorships[7].institutions[0].ror | https://ror.org/02pjdv450 |
| authorships[7].institutions[0].type | archive |
| authorships[7].institutions[0].lineage | https://openalex.org/I1313142568, https://openalex.org/I33213144 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Florida Museum of Natural History |
| authorships[7].institutions[1].id | https://openalex.org/I33213144 |
| authorships[7].institutions[1].ror | https://ror.org/02y3ad647 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I33213144 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | University of Florida |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Robert Guralnick |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Florida Museum of Natural History University of Florida Gainesville Florida USA |
| authorships[8].author.id | https://openalex.org/A5057569385 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0925-3421 |
| authorships[8].author.display_name | Daijiang Li |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I138006243 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA |
| authorships[8].institutions[0].id | https://openalex.org/I138006243 |
| authorships[8].institutions[0].ror | https://ror.org/03m2x1q45 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I138006243 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Arizona |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Daijiang Li |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Ecology and Evolutionary Biology University of Arizona Tucson Arizona USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1111/2041-210x.70081 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-06-20T00:00:00 |
| display_name | |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2058118494, https://openalex.org/W2392768766, https://openalex.org/W2373524250, https://openalex.org/W4206027277, https://openalex.org/W2382021449, https://openalex.org/W2095118173, https://openalex.org/W2106424170, https://openalex.org/W1985426483, https://openalex.org/W2501188010, https://openalex.org/W4299935056 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1111/2041-210x.70081 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1131227 |
| best_oa_location.source.issn | 2041-210X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2041-210X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Methods in Ecology and Evolution |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Methods in Ecology and Evolution |
| best_oa_location.landing_page_url | https://doi.org/10.1111/2041-210x.70081 |
| primary_location.id | doi:10.1111/2041-210x.70081 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1131227 |
| primary_location.source.issn | 2041-210X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2041-210X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Methods in Ecology and Evolution |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Methods in Ecology and Evolution |
| primary_location.landing_page_url | https://doi.org/10.1111/2041-210x.70081 |
| publication_date | 2025-06-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4401158448, https://openalex.org/W3038588281, https://openalex.org/W4210670502, https://openalex.org/W4384829521, https://openalex.org/W4392372060, https://openalex.org/W3198420049, https://openalex.org/W2809512934, https://openalex.org/W6893151949, https://openalex.org/W4280641461, https://openalex.org/W3213928765, https://openalex.org/W4372295068, https://openalex.org/W4313156423, https://openalex.org/W4220994411, https://openalex.org/W2923362954, https://openalex.org/W3119281122, https://openalex.org/W4366774799, https://openalex.org/W3109347929, https://openalex.org/W2982747691, https://openalex.org/W4233280801, https://openalex.org/W3163487893, https://openalex.org/W3025914776, https://openalex.org/W6949700597, https://openalex.org/W2922633580, https://openalex.org/W3198643929, https://openalex.org/W2096682311, https://openalex.org/W4392512503, https://openalex.org/W3121990338, https://openalex.org/W2799793824, https://openalex.org/W2514092235, https://openalex.org/W2415076259, https://openalex.org/W3038604977, https://openalex.org/W6931259419, https://openalex.org/W2979826702, https://openalex.org/W4309701407, https://openalex.org/W3121804420, https://openalex.org/W4297492875, https://openalex.org/W3104325587, https://openalex.org/W4407813513, https://openalex.org/W2804233742 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 4, 131, 146, 152, 178, 222, 314 |
| abstract_inverted_index.53 | 108 |
| abstract_inverted_index.We | 219, 288 |
| abstract_inverted_index.an | 184, 272 |
| abstract_inverted_index.as | 37, 175, 177 |
| abstract_inverted_index.be | 234 |
| abstract_inverted_index.by | 90, 237, 290 |
| abstract_inverted_index.in | 7, 14, 70, 94, 210, 320 |
| abstract_inverted_index.is | 82, 101, 200 |
| abstract_inverted_index.it | 160 |
| abstract_inverted_index.of | 30, 49, 73, 112, 116, 140, 181, 225, 253, 278 |
| abstract_inverted_index.on | 19, 86, 164, 206 |
| abstract_inverted_index.so | 230 |
| abstract_inverted_index.to | 78, 83, 136, 155, 195, 312 |
| abstract_inverted_index.we | 105, 241 |
| abstract_inverted_index.Key | 194 |
| abstract_inverted_index.One | 76 |
| abstract_inverted_index.Our | 262 |
| abstract_inverted_index.all | 122, 319 |
| abstract_inverted_index.and | 10, 22, 25, 40, 47, 58, 67, 100, 114, 124, 142, 159, 171, 190, 203, 213, 228, 271, 276, 285, 306 |
| abstract_inverted_index.are | 42, 55, 265 |
| abstract_inverted_index.but | 52 |
| abstract_inverted_index.can | 233 |
| abstract_inverted_index.end | 263 |
| abstract_inverted_index.for | 44, 168, 188, 192, 281, 302 |
| abstract_inverted_index.how | 243 |
| abstract_inverted_index.new | 268, 299 |
| abstract_inverted_index.set | 224 |
| abstract_inverted_index.the | 71, 128, 138, 215, 238, 254, 282 |
| abstract_inverted_index.use | 277 |
| abstract_inverted_index.Here | 104 |
| abstract_inverted_index.also | 220 |
| abstract_inverted_index.been | 259 |
| abstract_inverted_index.data | 54, 62, 99, 199, 249, 257, 269, 280 |
| abstract_inverted_index.face | 72 |
| abstract_inverted_index.form | 313 |
| abstract_inverted_index.from | 119, 126 |
| abstract_inverted_index.gaps | 63, 81 |
| abstract_inverted_index.have | 16, 258 |
| abstract_inverted_index.high | 162, 179 |
| abstract_inverted_index.leaf | 304 |
| abstract_inverted_index.next | 292 |
| abstract_inverted_index.over | 107 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.situ | 321 |
| abstract_inverted_index.such | 36, 80 |
| abstract_inverted_index.test | 166 |
| abstract_inverted_index.that | 231 |
| abstract_inverted_index.this | 244 |
| abstract_inverted_index.true | 216 |
| abstract_inverted_index.used | 235 |
| abstract_inverted_index.well | 176 |
| abstract_inverted_index.when | 31 |
| abstract_inverted_index.with | 151, 183, 309 |
| abstract_inverted_index.90.4% | 191 |
| abstract_inverted_index.Plant | 1 |
| abstract_inverted_index.These | 61 |
| abstract_inverted_index.close | 289 |
| abstract_inverted_index.drawn | 125 |
| abstract_inverted_index.field | 87, 110, 211 |
| abstract_inverted_index.fruit | 172 |
| abstract_inverted_index.globe | 255 |
| abstract_inverted_index.human | 117 |
| abstract_inverted_index.level | 180 |
| abstract_inverted_index.limit | 64 |
| abstract_inverted_index.model | 134 |
| abstract_inverted_index.noise | 208 |
| abstract_inverted_index.often | 56 |
| abstract_inverted_index.other | 310 |
| abstract_inverted_index.plant | 322 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.rate. | 218 |
| abstract_inverted_index.taken | 89 |
| abstract_inverted_index.these | 53 |
| abstract_inverted_index.those | 279 |
| abstract_inverted_index.train | 130 |
| abstract_inverted_index.tuned | 266 |
| abstract_inverted_index.where | 256 |
| abstract_inverted_index.(95%), | 174 |
| abstract_inverted_index.(98.6% | 187 |
| abstract_inverted_index.across | 127 |
| abstract_inverted_index.adding | 298 |
| abstract_inverted_index.biased | 59 |
| abstract_inverted_index.causes | 46 |
| abstract_inverted_index.detect | 137 |
| abstract_inverted_index.effort | 245 |
| abstract_inverted_index.expert | 185 |
| abstract_inverted_index.flower | 169 |
| abstract_inverted_index.fruits | 141 |
| abstract_inverted_index.global | 11, 315 |
| abstract_inverted_index.images | 88, 111, 167 |
| abstract_inverted_index.masked | 153 |
| abstract_inverted_index.plants | 32, 113 |
| abstract_inverted_index.public | 91 |
| abstract_inverted_index.shifts | 13 |
| abstract_inverted_index.sparse | 57 |
| abstract_inverted_index.steps, | 293 |
| abstract_inverted_index.tuning | 202 |
| abstract_inverted_index.vastly | 246 |
| abstract_inverted_index.vision | 133, 147 |
| abstract_inverted_index.(98.5%) | 170 |
| abstract_inverted_index.before. | 261 |
| abstract_inverted_index.broader | 65, 283 |
| abstract_inverted_index.central | 316 |
| abstract_inverted_index.closing | 79 |
| abstract_inverted_index.develop | 221 |
| abstract_inverted_index.example | 303 |
| abstract_inverted_index.flowers | 189 |
| abstract_inverted_index.focused | 205 |
| abstract_inverted_index.further | 307 |
| abstract_inverted_index.impacts | 18 |
| abstract_inverted_index.improve | 156 |
| abstract_inverted_index.limited | 260 |
| abstract_inverted_index.metrics | 227 |
| abstract_inverted_index.million | 109 |
| abstract_inverted_index.models, | 267 |
| abstract_inverted_index.quality | 226 |
| abstract_inverted_index.regions | 252 |
| abstract_inverted_index.results | 232 |
| abstract_inverted_index.shaping | 8 |
| abstract_inverted_index.shifts, | 51 |
| abstract_inverted_index.species | 20 |
| abstract_inverted_index.undergo | 33 |
| abstract_inverted_index.utilize | 106 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 240 |
| abstract_inverted_index.accuracy | 163 |
| abstract_inverted_index.achieves | 161 |
| abstract_inverted_index.computer | 132 |
| abstract_inverted_index.critical | 43 |
| abstract_inverted_index.database | 317 |
| abstract_inverted_index.document | 84 |
| abstract_inverted_index.flowers. | 143 |
| abstract_inverted_index.fruiting | 41 |
| abstract_inverted_index.fruits). | 193 |
| abstract_inverted_index.inherent | 209 |
| abstract_inverted_index.metadata | 229 |
| abstract_inverted_index.millions | 115 |
| abstract_inverted_index.positive | 217 |
| abstract_inverted_index.presence | 139, 173 |
| abstract_inverted_index.products | 264 |
| abstract_inverted_index.provides | 96 |
| abstract_inverted_index.rapidly. | 103 |
| abstract_inverted_index.reducing | 207 |
| abstract_inverted_index.research | 284 |
| abstract_inverted_index.seasonal | 34 |
| abstract_inverted_index.showcase | 242 |
| abstract_inverted_index.solution | 77 |
| abstract_inverted_index.spanning | 121 |
| abstract_inverted_index.success, | 158 |
| abstract_inverted_index.targets, | 301 |
| abstract_inverted_index.tracking | 45 |
| abstract_inverted_index.utilizes | 145 |
| abstract_inverted_index.Detailed, | 27 |
| abstract_inverted_index.agreement | 182 |
| abstract_inverted_index.annotator | 186 |
| abstract_inverted_index.cascading | 17 |
| abstract_inverted_index.coverage, | 250 |
| abstract_inverted_index.discovery | 275 |
| abstract_inverted_index.ecosystem | 23 |
| abstract_inverted_index.expanding | 102 |
| abstract_inverted_index.flowering | 39 |
| abstract_inverted_index.function. | 26 |
| abstract_inverted_index.globally. | 60 |
| abstract_inverted_index.including | 251, 294 |
| abstract_inverted_index.increases | 247 |
| abstract_inverted_index.phenology | 2, 15, 50, 85, 198, 248, 296, 300, 323 |
| abstract_inverted_index.producing | 196 |
| abstract_inverted_index.resources | 270, 311 |
| abstract_inverted_index.structure | 24 |
| abstract_inverted_index.automating | 295 |
| abstract_inverted_index.community. | 239, 287 |
| abstract_inverted_index.continuing | 74 |
| abstract_inverted_index.discussing | 291 |
| abstract_inverted_index.globe—to | 129 |
| abstract_inverted_index.held‐out | 165 |
| abstract_inverted_index.management | 286 |
| abstract_inverted_index.maximizing | 214 |
| abstract_inverted_index.phenology, | 305 |
| abstract_inverted_index.pretrained | 150 |
| abstract_inverted_index.resources. | 324 |
| abstract_inverted_index.validation | 204 |
| abstract_inverted_index.PhenoVision | 144 |
| abstract_inverted_index.angiosperms | 123 |
| abstract_inverted_index.annotations | 118 |
| abstract_inverted_index.application | 273 |
| abstract_inverted_index.autoencoder | 154 |
| abstract_inverted_index.ecosystems, | 9 |
| abstract_inverted_index.effectively | 236 |
| abstract_inverted_index.forecasting | 68 |
| abstract_inverted_index.fundamental | 5 |
| abstract_inverted_index.integrating | 318 |
| abstract_inverted_index.integration | 308 |
| abstract_inverted_index.leaf‐out, | 38 |
| abstract_inverted_index.particular, | 95 |
| abstract_inverted_index.transformer | 148 |
| abstract_inverted_index.transitions | 35 |
| abstract_inverted_index.annotations, | 297 |
| abstract_inverted_index.architecture | 149 |
| abstract_inverted_index.consequences | 48 |
| abstract_inverted_index.disturbance. | 75 |
| abstract_inverted_index.iNaturalist, | 93 |
| abstract_inverted_index.improvements | 69 |
| abstract_inverted_index.interactions | 21 |
| abstract_inverted_index.observations | 29 |
| abstract_inverted_index.photographs, | 212 |
| abstract_inverted_index.standardized | 223 |
| abstract_inverted_index.streamlining | 274 |
| abstract_inverted_index.(PhenoVision) | 135 |
| abstract_inverted_index.participants. | 92 |
| abstract_inverted_index.classification | 157 |
| abstract_inverted_index.global‐scale | 97 |
| abstract_inverted_index.high‐quality | 28 |
| abstract_inverted_index.generalizations | 66 |
| abstract_inverted_index.change‐induced | 12 |
| abstract_inverted_index.research‐grade | 98 |
| abstract_inverted_index.research‐ready | 197 |
| abstract_inverted_index.iNaturalist—data | 120 |
| abstract_inverted_index.post‐calibration | 201 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.94944444 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |