QuoteTarget : A sequence‐based transformer protein language model to identify potentially druggable protein targets
Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1002/pro.4555
The development of efficient computational methods for drug target protein identification can compensate for the high cost of experiments and is therefore of great significance for drug development. However, existing structure‐based drug target protein‐identification algorithms are limited by the insufficient number of proteins with experimentally resolved structures. Moreover, sequence‐based algorithms cannot effectively extract information from protein sequences and thus display insufficient accuracy. Here, we combined the sequence‐based self‐supervised pretraining protein language model ESM1b with a graph convolutional neural network classifier to develop an improved, sequence‐based drug target protein identification method. This complete model, named QuoteTarget, efficiently encodes proteins based on sequence information alone and achieves an accuracy of 95% with the nonredundant drug target and nondrug target datasets constructed for this study. When applied to all proteins from Homo sapiens , QuoteTarget identified 1213 potential undeveloped drug target proteins. We further inferred residue‐binding weights from the well‐trained network using the gradient‐weighted class activation mapping (Grad–Cam) algorithm. Notably, we found that without any binding site information input, significant residues inferred by the model closely match the experimentally confirmed drug molecule‐binding sites. Thus, our work provides a highly effective sequence‐based identifier for drug target proteins, as well to yield new insights into recognizing drug molecule‐binding sites. The entire model is available at https://github.com/Chenjxjx/drug-target-prediction .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/pro.4555
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555
- OA Status
- bronze
- Cited By
- 28
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312129273
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312129273Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/pro.4555Digital Object Identifier
- Title
-
QuoteTarget : A sequence‐based transformer protein language model to identify potentially druggable protein targetsWork title - Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-24Full publication date if available
- Authors
-
Jiaxiao Chen, Zhonghui Gu, Youjun Xu, Minghua Deng, Luhua Lai, Jianfeng PeiList of authors in order
- Landing page
-
https://doi.org/10.1002/pro.4555Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555Direct OA link when available
- Concepts
-
Druggability, Computational biology, Computer science, Classifier (UML), Drug discovery, Protein sequencing, Sequence (biology), Drug development, Identification (biology), Artificial intelligence, Peptide sequence, Bioinformatics, Drug, Biology, Biochemistry, Gene, Botany, PharmacologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
28Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 8, 2023: 7, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312129273 |
|---|---|
| doi | https://doi.org/10.1002/pro.4555 |
| ids.doi | https://doi.org/10.1002/pro.4555 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36564866 |
| ids.openalex | https://openalex.org/W4312129273 |
| fwci | 7.37373738 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000737 |
| mesh[1].descriptor_ui | D011506 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | chemistry |
| mesh[1].descriptor_name | Proteins |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001665 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Binding Sites |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000595 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Amino Acid Sequence |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D006801 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Humans |
| mesh[7].qualifier_ui | Q000737 |
| mesh[7].descriptor_ui | D011506 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | chemistry |
| mesh[7].descriptor_name | Proteins |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D001665 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Binding Sites |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000595 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Amino Acid Sequence |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000737 |
| mesh[13].descriptor_ui | D011506 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | chemistry |
| mesh[13].descriptor_name | Proteins |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D016571 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Neural Networks, Computer |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000465 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Algorithms |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D001665 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Binding Sites |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000595 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Amino Acid Sequence |
| type | article |
| title | |
| awards[0].id | https://openalex.org/G1108311842 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 22033001 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G7727478483 |
| awards[1].funder_id | https://openalex.org/F4320323137 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2021‐I2M‐5‐014 |
| awards[1].funder_display_name | Chinese Academy of Medical Sciences |
| biblio.issue | 2 |
| biblio.volume | 32 |
| biblio.last_page | e4555 |
| biblio.first_page | e4555 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T12254 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Machine Learning in Bioinformatics |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320323137 |
| funders[1].ror | https://ror.org/03cve4549 |
| funders[1].display_name | Chinese Academy of Medical Sciences |
| is_xpac | False |
| apc_list.value | 4070 |
| apc_list.currency | USD |
| apc_list.value_usd | 4070 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C10679952 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7636659145355225 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5308937 |
| concepts[0].display_name | Druggability |
| concepts[1].id | https://openalex.org/C70721500 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6099006533622742 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[1].display_name | Computational biology |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5525986552238464 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.533928632736206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C74187038 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5321447253227234 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1418791 |
| concepts[4].display_name | Drug discovery |
| concepts[5].id | https://openalex.org/C10010492 |
| concepts[5].level | 4 |
| concepts[5].score | 0.47771501541137695 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3142557 |
| concepts[5].display_name | Protein sequencing |
| concepts[6].id | https://openalex.org/C2778112365 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43706732988357544 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[6].display_name | Sequence (biology) |
| concepts[7].id | https://openalex.org/C64903051 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42174020409584045 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2198549 |
| concepts[7].display_name | Drug development |
| concepts[8].id | https://openalex.org/C116834253 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41082438826560974 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[8].display_name | Identification (biology) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3594377040863037 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C167625842 |
| concepts[10].level | 3 |
| concepts[10].score | 0.2750340700149536 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q899763 |
| concepts[10].display_name | Peptide sequence |
| concepts[11].id | https://openalex.org/C60644358 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2675471901893616 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[11].display_name | Bioinformatics |
| concepts[12].id | https://openalex.org/C2780035454 |
| concepts[12].level | 2 |
| concepts[12].score | 0.25562340021133423 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8386 |
| concepts[12].display_name | Drug |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22837239503860474 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.12240585684776306 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.10153287649154663 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C59822182 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[16].display_name | Botany |
| concepts[17].id | https://openalex.org/C98274493 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q128406 |
| concepts[17].display_name | Pharmacology |
| keywords[0].id | https://openalex.org/keywords/druggability |
| keywords[0].score | 0.7636659145355225 |
| keywords[0].display_name | Druggability |
| keywords[1].id | https://openalex.org/keywords/computational-biology |
| keywords[1].score | 0.6099006533622742 |
| keywords[1].display_name | Computational biology |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5525986552238464 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.533928632736206 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/drug-discovery |
| keywords[4].score | 0.5321447253227234 |
| keywords[4].display_name | Drug discovery |
| keywords[5].id | https://openalex.org/keywords/protein-sequencing |
| keywords[5].score | 0.47771501541137695 |
| keywords[5].display_name | Protein sequencing |
| keywords[6].id | https://openalex.org/keywords/sequence |
| keywords[6].score | 0.43706732988357544 |
| keywords[6].display_name | Sequence (biology) |
| keywords[7].id | https://openalex.org/keywords/drug-development |
| keywords[7].score | 0.42174020409584045 |
| keywords[7].display_name | Drug development |
| keywords[8].id | https://openalex.org/keywords/identification |
| keywords[8].score | 0.41082438826560974 |
| keywords[8].display_name | Identification (biology) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3594377040863037 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/peptide-sequence |
| keywords[10].score | 0.2750340700149536 |
| keywords[10].display_name | Peptide sequence |
| keywords[11].id | https://openalex.org/keywords/bioinformatics |
| keywords[11].score | 0.2675471901893616 |
| keywords[11].display_name | Bioinformatics |
| keywords[12].id | https://openalex.org/keywords/drug |
| keywords[12].score | 0.25562340021133423 |
| keywords[12].display_name | Drug |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.22837239503860474 |
| keywords[13].display_name | Biology |
| keywords[14].id | https://openalex.org/keywords/biochemistry |
| keywords[14].score | 0.12240585684776306 |
| keywords[14].display_name | Biochemistry |
| keywords[15].id | https://openalex.org/keywords/gene |
| keywords[15].score | 0.10153287649154663 |
| keywords[15].display_name | Gene |
| language | en |
| locations[0].id | doi:10.1002/pro.4555 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S156919612 |
| locations[0].source.issn | 0961-8368, 1469-896X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0961-8368 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Protein Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Protein Science |
| locations[0].landing_page_url | https://doi.org/10.1002/pro.4555 |
| locations[1].id | pmid:36564866 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Protein science : a publication of the Protein Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36564866 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9878469 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Protein Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9878469 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5003278343 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8409-7126 |
| authorships[0].author.display_name | Jiaxiao Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I20231570 |
| authorships[0].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peking University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiaxiao Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5044318086 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6142-4358 |
| authorships[1].author.display_name | Zhonghui Gu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210160507 |
| authorships[1].affiliations[0].raw_affiliation_string | Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210160507 |
| authorships[1].institutions[0].ror | https://ror.org/05kje8j93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570, https://openalex.org/I4210160507, https://openalex.org/I99065089 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Center for Life Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I20231570 |
| authorships[1].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhonghui Gu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5101426022 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8022-6194 |
| authorships[2].author.display_name | Youjun Xu |
| authorships[2].affiliations[0].raw_affiliation_string | Infinite Intelligence Pharma, Beijing, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Youjun Xu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Infinite Intelligence Pharma, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5101690048 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-8132-7023 |
| authorships[3].author.display_name | Minghua Deng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mathematical Sciences, Peking University, Beijing, China |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Minghua Deng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mathematical Sciences, Peking University, Beijing, China |
| authorships[4].author.id | https://openalex.org/A5064049271 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8343-7587 |
| authorships[4].author.display_name | Luhua Lai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[4].affiliations[0].raw_affiliation_string | Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210160507 |
| authorships[4].affiliations[1].raw_affiliation_string | Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I20231570, https://openalex.org/I4210116048 |
| authorships[4].affiliations[2].raw_affiliation_string | BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China |
| authorships[4].affiliations[3].institution_ids | https://openalex.org/I20231570 |
| authorships[4].affiliations[3].raw_affiliation_string | Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210116048 |
| authorships[4].institutions[0].ror | https://ror.org/02601yx74 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210116048 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing National Laboratory for Molecular Sciences |
| authorships[4].institutions[1].id | https://openalex.org/I4210160507 |
| authorships[4].institutions[1].ror | https://ror.org/05kje8j93 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I20231570, https://openalex.org/I4210160507, https://openalex.org/I99065089 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Center for Life Sciences |
| authorships[4].institutions[2].id | https://openalex.org/I200296433 |
| authorships[4].institutions[2].ror | https://ror.org/02drdmm93 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I200296433 |
| authorships[4].institutions[2].country_code | CN |
| authorships[4].institutions[2].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[4].institutions[3].id | https://openalex.org/I20231570 |
| authorships[4].institutions[3].ror | https://ror.org/02v51f717 |
| authorships[4].institutions[3].type | education |
| authorships[4].institutions[3].lineage | https://openalex.org/I20231570 |
| authorships[4].institutions[3].country_code | CN |
| authorships[4].institutions[3].display_name | Peking University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Luhua Lai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5047704083 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8482-1185 |
| authorships[5].author.display_name | Jianfeng Pei |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200296433 |
| authorships[5].affiliations[0].raw_affiliation_string | Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I20231570 |
| authorships[5].affiliations[1].raw_affiliation_string | Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I200296433 |
| authorships[5].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[5].institutions[1].id | https://openalex.org/I20231570 |
| authorships[5].institutions[1].ror | https://ror.org/02v51f717 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I20231570 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Peking University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jianfeng Pei |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-04T00:00:00 |
| display_name | |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2556855892, https://openalex.org/W1969888071, https://openalex.org/W2035422779, https://openalex.org/W2925167008, https://openalex.org/W2008033400, https://openalex.org/W3023385275, https://openalex.org/W1972982874, https://openalex.org/W2127264463, https://openalex.org/W2764191054, https://openalex.org/W2017375993 |
| cited_by_count | 28 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1002/pro.4555 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S156919612 |
| best_oa_location.source.issn | 0961-8368, 1469-896X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0961-8368 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Protein Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Protein Science |
| best_oa_location.landing_page_url | https://doi.org/10.1002/pro.4555 |
| primary_location.id | doi:10.1002/pro.4555 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S156919612 |
| primary_location.source.issn | 0961-8368, 1469-896X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0961-8368 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Protein Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.4555 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Protein Science |
| primary_location.landing_page_url | https://doi.org/10.1002/pro.4555 |
| publication_date | 2022-12-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3167479850, https://openalex.org/W24553703, https://openalex.org/W4212848381, https://openalex.org/W2273267066, https://openalex.org/W2170747616, https://openalex.org/W1978839489, https://openalex.org/W3164046276, https://openalex.org/W4283816281, https://openalex.org/W1754973657, https://openalex.org/W2252158617, https://openalex.org/W3081836708, https://openalex.org/W3177828909, https://openalex.org/W2137052779, https://openalex.org/W2966590054, https://openalex.org/W2164088236, https://openalex.org/W2082032299, https://openalex.org/W2963647449, https://openalex.org/W2035175173, https://openalex.org/W1614298861, https://openalex.org/W3095583226, https://openalex.org/W3112376646, https://openalex.org/W2781620754, https://openalex.org/W2166550586, https://openalex.org/W2049718696, https://openalex.org/W6763868836, https://openalex.org/W6791955017, https://openalex.org/W3146944767, https://openalex.org/W6610517080, https://openalex.org/W3143253488, https://openalex.org/W2028279608, https://openalex.org/W2616247523, https://openalex.org/W2529838505, https://openalex.org/W2901421968, https://openalex.org/W2896321622, https://openalex.org/W2044199868, https://openalex.org/W4255677297, https://openalex.org/W1981064967, https://openalex.org/W2987928072, https://openalex.org/W2767891136, https://openalex.org/W3009999522, https://openalex.org/W2907492528, https://openalex.org/W2799327292, https://openalex.org/W2018661561, https://openalex.org/W2035618305, https://openalex.org/W4207043639, https://openalex.org/W4206078729, https://openalex.org/W4221159485, https://openalex.org/W2951433247, https://openalex.org/W295894637, https://openalex.org/W3102564565, https://openalex.org/W4281478251, https://openalex.org/W4312129273, https://openalex.org/W2971227267, https://openalex.org/W2139942857, https://openalex.org/W4210257598 |
| referenced_works_count | 55 |
| abstract_inverted_index., | 131 |
| abstract_inverted_index.. | 212 |
| abstract_inverted_index.a | 75, 185 |
| abstract_inverted_index.We | 140 |
| abstract_inverted_index.an | 83, 106 |
| abstract_inverted_index.as | 194 |
| abstract_inverted_index.at | 210 |
| abstract_inverted_index.by | 38, 170 |
| abstract_inverted_index.is | 21, 208 |
| abstract_inverted_index.of | 3, 18, 23, 42, 108 |
| abstract_inverted_index.on | 100 |
| abstract_inverted_index.to | 81, 125, 196 |
| abstract_inverted_index.we | 64, 158 |
| abstract_inverted_index.95% | 109 |
| abstract_inverted_index.The | 1, 205 |
| abstract_inverted_index.all | 126 |
| abstract_inverted_index.and | 20, 58, 104, 115 |
| abstract_inverted_index.any | 162 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.can | 12 |
| abstract_inverted_index.for | 7, 14, 26, 120, 190 |
| abstract_inverted_index.new | 198 |
| abstract_inverted_index.our | 182 |
| abstract_inverted_index.the | 15, 39, 66, 111, 146, 150, 171, 175 |
| abstract_inverted_index.1213 | 134 |
| abstract_inverted_index.Homo | 129 |
| abstract_inverted_index.This | 91 |
| abstract_inverted_index.When | 123 |
| abstract_inverted_index.cost | 17 |
| abstract_inverted_index.drug | 8, 27, 32, 86, 113, 137, 178, 191, 202 |
| abstract_inverted_index.from | 55, 128, 145 |
| abstract_inverted_index.high | 16 |
| abstract_inverted_index.into | 200 |
| abstract_inverted_index.site | 164 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.this | 121 |
| abstract_inverted_index.thus | 59 |
| abstract_inverted_index.well | 195 |
| abstract_inverted_index.with | 44, 74, 110 |
| abstract_inverted_index.work | 183 |
| abstract_inverted_index.ESM1b | 73 |
| abstract_inverted_index.Here, | 63 |
| abstract_inverted_index.Thus, | 181 |
| abstract_inverted_index.alone | 103 |
| abstract_inverted_index.based | 99 |
| abstract_inverted_index.class | 152 |
| abstract_inverted_index.found | 159 |
| abstract_inverted_index.graph | 76 |
| abstract_inverted_index.great | 24 |
| abstract_inverted_index.match | 174 |
| abstract_inverted_index.model | 72, 172, 207 |
| abstract_inverted_index.named | 94 |
| abstract_inverted_index.using | 149 |
| abstract_inverted_index.yield | 197 |
| abstract_inverted_index.cannot | 51 |
| abstract_inverted_index.entire | 206 |
| abstract_inverted_index.highly | 186 |
| abstract_inverted_index.input, | 166 |
| abstract_inverted_index.model, | 93 |
| abstract_inverted_index.neural | 78 |
| abstract_inverted_index.number | 41 |
| abstract_inverted_index.sites. | 180, 204 |
| abstract_inverted_index.study. | 122 |
| abstract_inverted_index.target | 9, 33, 87, 114, 117, 138, 192 |
| abstract_inverted_index.applied | 124 |
| abstract_inverted_index.binding | 163 |
| abstract_inverted_index.closely | 173 |
| abstract_inverted_index.develop | 82 |
| abstract_inverted_index.display | 60 |
| abstract_inverted_index.encodes | 97 |
| abstract_inverted_index.extract | 53 |
| abstract_inverted_index.further | 141 |
| abstract_inverted_index.limited | 37 |
| abstract_inverted_index.mapping | 154 |
| abstract_inverted_index.method. | 90 |
| abstract_inverted_index.methods | 6 |
| abstract_inverted_index.network | 79, 148 |
| abstract_inverted_index.nondrug | 116 |
| abstract_inverted_index.protein | 10, 56, 70, 88 |
| abstract_inverted_index.sapiens | 130 |
| abstract_inverted_index.weights | 144 |
| abstract_inverted_index.without | 161 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.Notably, | 157 |
| abstract_inverted_index.accuracy | 107 |
| abstract_inverted_index.achieves | 105 |
| abstract_inverted_index.combined | 65 |
| abstract_inverted_index.complete | 92 |
| abstract_inverted_index.datasets | 118 |
| abstract_inverted_index.existing | 30 |
| abstract_inverted_index.inferred | 142, 169 |
| abstract_inverted_index.insights | 199 |
| abstract_inverted_index.language | 71 |
| abstract_inverted_index.proteins | 43, 98, 127 |
| abstract_inverted_index.provides | 184 |
| abstract_inverted_index.residues | 168 |
| abstract_inverted_index.resolved | 46 |
| abstract_inverted_index.sequence | 101 |
| abstract_inverted_index.Moreover, | 48 |
| abstract_inverted_index.accuracy. | 62 |
| abstract_inverted_index.available | 209 |
| abstract_inverted_index.confirmed | 177 |
| abstract_inverted_index.effective | 187 |
| abstract_inverted_index.efficient | 4 |
| abstract_inverted_index.improved, | 84 |
| abstract_inverted_index.potential | 135 |
| abstract_inverted_index.proteins, | 193 |
| abstract_inverted_index.proteins. | 139 |
| abstract_inverted_index.sequences | 57 |
| abstract_inverted_index.therefore | 22 |
| abstract_inverted_index.activation | 153 |
| abstract_inverted_index.algorithm. | 156 |
| abstract_inverted_index.algorithms | 35, 50 |
| abstract_inverted_index.classifier | 80 |
| abstract_inverted_index.compensate | 13 |
| abstract_inverted_index.identified | 133 |
| abstract_inverted_index.identifier | 189 |
| abstract_inverted_index.QuoteTarget | 132 |
| abstract_inverted_index.constructed | 119 |
| abstract_inverted_index.development | 2 |
| abstract_inverted_index.effectively | 52 |
| abstract_inverted_index.efficiently | 96 |
| abstract_inverted_index.experiments | 19 |
| abstract_inverted_index.information | 54, 102, 165 |
| abstract_inverted_index.pretraining | 69 |
| abstract_inverted_index.recognizing | 201 |
| abstract_inverted_index.significant | 167 |
| abstract_inverted_index.structures. | 47 |
| abstract_inverted_index.undeveloped | 136 |
| abstract_inverted_index.(Grad–Cam) | 155 |
| abstract_inverted_index.QuoteTarget, | 95 |
| abstract_inverted_index.development. | 28 |
| abstract_inverted_index.insufficient | 40, 61 |
| abstract_inverted_index.nonredundant | 112 |
| abstract_inverted_index.significance | 25 |
| abstract_inverted_index.computational | 5 |
| abstract_inverted_index.convolutional | 77 |
| abstract_inverted_index.experimentally | 45, 176 |
| abstract_inverted_index.identification | 11, 89 |
| abstract_inverted_index.well‐trained | 147 |
| abstract_inverted_index.sequence‐based | 49, 67, 85, 188 |
| abstract_inverted_index.residue‐binding | 143 |
| abstract_inverted_index.self‐supervised | 68 |
| abstract_inverted_index.structure‐based | 31 |
| abstract_inverted_index.molecule‐binding | 179, 203 |
| abstract_inverted_index.gradient‐weighted | 151 |
| abstract_inverted_index.protein‐identification | 34 |
| abstract_inverted_index.https://github.com/Chenjxjx/drug-target-prediction | 211 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5047704083 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I200296433, https://openalex.org/I20231570 |
| citation_normalized_percentile.value | 0.95369593 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |