Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.12489
In this work, we introduce Scribbles for All, a label and training data generation algorithm for semantic segmentation trained on scribble labels. Training or fine-tuning semantic segmentation models with weak supervision has become an important topic recently and was subject to significant advances in model quality. In this setting, scribbles are a promising label type to achieve high quality segmentation results while requiring a much lower annotation effort than usual pixel-wise dense semantic segmentation annotations. The main limitation of scribbles as source for weak supervision is the lack of challenging datasets for scribble segmentation, which hinders the development of novel methods and conclusive evaluations. To overcome this limitation, Scribbles for All provides scribble labels for several popular segmentation datasets and provides an algorithm to automatically generate scribble labels for any dataset with dense annotations, paving the way for new insights and model advancements in the field of weakly supervised segmentation. In addition to providing datasets and algorithm, we evaluate state-of-the-art segmentation models on our datasets and show that models trained with our synthetic labels perform competitively with respect to models trained on manual labels. Thus, our datasets enable state-of-the-art research into methods for scribble-labeled semantic segmentation. The datasets, scribble generation algorithm, and baselines are publicly available at https://github.com/wbkit/Scribbles4All
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.12489
- https://arxiv.org/pdf/2408.12489
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405662390
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405662390Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.12489Digital Object Identifier
- Title
-
Scribbles for All: Benchmarking Scribble Supervised Segmentation Across DatasetsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-22Full publication date if available
- Authors
-
Wolfgang Boettcher, Lukas Hoyer, Ozan Unal, Jan Eric Lenssen, Bernt SchieleList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.12489Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.12489Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.12489Direct OA link when available
- Concepts
-
Benchmarking, Segmentation, Computer science, Artificial intelligence, Machine learning, Data science, Pattern recognition (psychology), Business, MarketingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405662390 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.12489 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.12489 |
| ids.openalex | https://openalex.org/W4405662390 |
| fwci | |
| type | preprint |
| title | Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12535 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.11339999735355377 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Data Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C86251818 |
| concepts[0].level | 2 |
| concepts[0].score | 0.957585871219635 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[0].display_name | Benchmarking |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7490317821502686 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5554599761962891 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.49094298481941223 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.377288818359375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3433120846748352 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3209291696548462 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C144133560 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1459033191204071 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[7].display_name | Business |
| concepts[8].id | https://openalex.org/C162853370 |
| concepts[8].level | 1 |
| concepts[8].score | 0.09582921862602234 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[8].display_name | Marketing |
| keywords[0].id | https://openalex.org/keywords/benchmarking |
| keywords[0].score | 0.957585871219635 |
| keywords[0].display_name | Benchmarking |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7490317821502686 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5554599761962891 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.49094298481941223 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.377288818359375 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.3433120846748352 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.3209291696548462 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/business |
| keywords[7].score | 0.1459033191204071 |
| keywords[7].display_name | Business |
| keywords[8].id | https://openalex.org/keywords/marketing |
| keywords[8].score | 0.09582921862602234 |
| keywords[8].display_name | Marketing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.12489 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.12489 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.12489 |
| locations[1].id | doi:10.48550/arxiv.2408.12489 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.12489 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112967201 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wolfgang Boettcher |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Boettcher, Wolfgang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053328232 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7391-0676 |
| authorships[1].author.display_name | Lukas Hoyer |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hoyer, Lukas |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5090395353 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1121-3883 |
| authorships[2].author.display_name | Ozan Unal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Unal, Ozan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5073462022 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4093-9840 |
| authorships[3].author.display_name | Jan Eric Lenssen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lenssen, Jan Eric |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051534545 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9683-5237 |
| authorships[4].author.display_name | Bernt Schiele |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Schiele, Bernt |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.12489 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Scribbles for All: Benchmarking Scribble Supervised Segmentation Across Datasets |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12535 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.11339999735355377 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Data Classification |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2000169967, https://openalex.org/W2112883198 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.12489 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.12489 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.12489 |
| primary_location.id | pmh:oai:arXiv.org:2408.12489 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.12489 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.12489 |
| publication_date | 2024-08-22 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 51, 63 |
| abstract_inverted_index.In | 0, 46, 150 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.an | 33, 121 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.at | 206 |
| abstract_inverted_index.in | 43, 143 |
| abstract_inverted_index.is | 85 |
| abstract_inverted_index.of | 78, 88, 98, 146 |
| abstract_inverted_index.on | 19, 162, 181 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 40, 55, 123, 152, 178 |
| abstract_inverted_index.we | 3, 157 |
| abstract_inverted_index.All | 110 |
| abstract_inverted_index.The | 75, 196 |
| abstract_inverted_index.and | 10, 37, 101, 119, 140, 155, 165, 201 |
| abstract_inverted_index.any | 129 |
| abstract_inverted_index.are | 50, 203 |
| abstract_inverted_index.for | 6, 15, 82, 91, 109, 114, 128, 137, 192 |
| abstract_inverted_index.has | 31 |
| abstract_inverted_index.new | 138 |
| abstract_inverted_index.our | 163, 171, 185 |
| abstract_inverted_index.the | 86, 96, 135, 144 |
| abstract_inverted_index.was | 38 |
| abstract_inverted_index.way | 136 |
| abstract_inverted_index.All, | 7 |
| abstract_inverted_index.data | 12 |
| abstract_inverted_index.high | 57 |
| abstract_inverted_index.into | 190 |
| abstract_inverted_index.lack | 87 |
| abstract_inverted_index.main | 76 |
| abstract_inverted_index.much | 64 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.than | 68 |
| abstract_inverted_index.that | 167 |
| abstract_inverted_index.this | 1, 47, 106 |
| abstract_inverted_index.type | 54 |
| abstract_inverted_index.weak | 29, 83 |
| abstract_inverted_index.with | 28, 131, 170, 176 |
| abstract_inverted_index.Thus, | 184 |
| abstract_inverted_index.dense | 71, 132 |
| abstract_inverted_index.field | 145 |
| abstract_inverted_index.label | 9, 53 |
| abstract_inverted_index.lower | 65 |
| abstract_inverted_index.model | 44, 141 |
| abstract_inverted_index.novel | 99 |
| abstract_inverted_index.topic | 35 |
| abstract_inverted_index.usual | 69 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.while | 61 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.become | 32 |
| abstract_inverted_index.effort | 67 |
| abstract_inverted_index.enable | 187 |
| abstract_inverted_index.labels | 113, 127, 173 |
| abstract_inverted_index.manual | 182 |
| abstract_inverted_index.models | 27, 161, 168, 179 |
| abstract_inverted_index.paving | 134 |
| abstract_inverted_index.source | 81 |
| abstract_inverted_index.weakly | 147 |
| abstract_inverted_index.achieve | 56 |
| abstract_inverted_index.dataset | 130 |
| abstract_inverted_index.hinders | 95 |
| abstract_inverted_index.labels. | 21, 183 |
| abstract_inverted_index.methods | 100, 191 |
| abstract_inverted_index.perform | 174 |
| abstract_inverted_index.popular | 116 |
| abstract_inverted_index.quality | 58 |
| abstract_inverted_index.respect | 177 |
| abstract_inverted_index.results | 60 |
| abstract_inverted_index.several | 115 |
| abstract_inverted_index.subject | 39 |
| abstract_inverted_index.trained | 18, 169, 180 |
| abstract_inverted_index.Training | 22 |
| abstract_inverted_index.addition | 151 |
| abstract_inverted_index.advances | 42 |
| abstract_inverted_index.datasets | 90, 118, 154, 164, 186 |
| abstract_inverted_index.evaluate | 158 |
| abstract_inverted_index.generate | 125 |
| abstract_inverted_index.insights | 139 |
| abstract_inverted_index.overcome | 105 |
| abstract_inverted_index.provides | 111, 120 |
| abstract_inverted_index.publicly | 204 |
| abstract_inverted_index.quality. | 45 |
| abstract_inverted_index.recently | 36 |
| abstract_inverted_index.research | 189 |
| abstract_inverted_index.scribble | 20, 92, 112, 126, 198 |
| abstract_inverted_index.semantic | 16, 25, 72, 194 |
| abstract_inverted_index.setting, | 48 |
| abstract_inverted_index.training | 11 |
| abstract_inverted_index.Scribbles | 5, 108 |
| abstract_inverted_index.algorithm | 14, 122 |
| abstract_inverted_index.available | 205 |
| abstract_inverted_index.baselines | 202 |
| abstract_inverted_index.datasets, | 197 |
| abstract_inverted_index.important | 34 |
| abstract_inverted_index.introduce | 4 |
| abstract_inverted_index.promising | 52 |
| abstract_inverted_index.providing | 153 |
| abstract_inverted_index.requiring | 62 |
| abstract_inverted_index.scribbles | 49, 79 |
| abstract_inverted_index.synthetic | 172 |
| abstract_inverted_index.algorithm, | 156, 200 |
| abstract_inverted_index.annotation | 66 |
| abstract_inverted_index.conclusive | 102 |
| abstract_inverted_index.generation | 13, 199 |
| abstract_inverted_index.limitation | 77 |
| abstract_inverted_index.pixel-wise | 70 |
| abstract_inverted_index.supervised | 148 |
| abstract_inverted_index.challenging | 89 |
| abstract_inverted_index.development | 97 |
| abstract_inverted_index.fine-tuning | 24 |
| abstract_inverted_index.limitation, | 107 |
| abstract_inverted_index.significant | 41 |
| abstract_inverted_index.supervision | 30, 84 |
| abstract_inverted_index.advancements | 142 |
| abstract_inverted_index.annotations, | 133 |
| abstract_inverted_index.annotations. | 74 |
| abstract_inverted_index.evaluations. | 103 |
| abstract_inverted_index.segmentation | 17, 26, 59, 73, 117, 160 |
| abstract_inverted_index.automatically | 124 |
| abstract_inverted_index.competitively | 175 |
| abstract_inverted_index.segmentation, | 93 |
| abstract_inverted_index.segmentation. | 149, 195 |
| abstract_inverted_index.scribble-labeled | 193 |
| abstract_inverted_index.state-of-the-art | 159, 188 |
| abstract_inverted_index.https://github.com/wbkit/Scribbles4All | 207 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |