Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.01949
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.01949
- https://arxiv.org/pdf/2512.01949
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416968892
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416968892Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.01949Digital Object Identifier
- Title
-
Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-01Full publication date if available
- Authors
-
Dannong Xu, Wei PangList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.01949Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.01949Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.01949Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416968892 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.01949 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.01949 |
| ids.openalex | https://openalex.org/W4416968892 |
| fwci | |
| type | preprint |
| title | Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.01949 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.01949 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.01949 |
| locations[1].id | doi:10.48550/arxiv.2512.01949 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.01949 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111005645 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dannong Xu |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Xu, Dannong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5080597597 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wei Pang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pang, Wei |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.01949 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T23:12:59.920255 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.01949 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.01949 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.01949 |
| primary_location.id | pmh:oai:arXiv.org:2512.01949 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.01949 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.01949 |
| publication_date | 2025-12-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 70, 87, 97 |
| abstract_inverted_index.On | 140 |
| abstract_inverted_index.To | 63 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 29 |
| abstract_inverted_index.it | 142 |
| abstract_inverted_index.no | 76 |
| abstract_inverted_index.of | 3, 55, 156 |
| abstract_inverted_index.on | 111, 115 |
| abstract_inverted_index.or | 50 |
| abstract_inverted_index.to | 13, 33, 46, 136, 145 |
| abstract_inverted_index.up | 144 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.10x | 150 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 17, 25, 61, 78, 96, 120, 132, 149 |
| abstract_inverted_index.but | 40 |
| abstract_inverted_index.the | 47, 53, 157 |
| abstract_inverted_index.two | 85 |
| abstract_inverted_index.6.8x | 146 |
| abstract_inverted_index.FLOP | 151 |
| abstract_inverted_index.from | 52 |
| abstract_inverted_index.show | 124 |
| abstract_inverted_index.that | 74, 91, 102, 125 |
| abstract_inverted_index.they | 108 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.used | 32 |
| abstract_inverted_index.user | 48 |
| abstract_inverted_index.when | 21 |
| abstract_inverted_index.Token | 27 |
| abstract_inverted_index.image | 119 |
| abstract_inverted_index.issue | 36 |
| abstract_inverted_index.large | 8 |
| abstract_inverted_index.leads | 12 |
| abstract_inverted_index.model | 130 |
| abstract_inverted_index.often | 43 |
| abstract_inverted_index.query | 49 |
| abstract_inverted_index.rapid | 1 |
| abstract_inverted_index.tasks | 123 |
| abstract_inverted_index.their | 59 |
| abstract_inverted_index.these | 65 |
| abstract_inverted_index.video | 121 |
| abstract_inverted_index.while | 153 |
| abstract_inverted_index.96.88% | 155 |
| abstract_inverted_index.MLLMs. | 82 |
| abstract_inverted_index.Script | 83, 126 |
| abstract_inverted_index.across | 80, 118 |
| abstract_inverted_index.growth | 2 |
| abstract_inverted_index.higher | 129 |
| abstract_inverted_index.ignore | 44 |
| abstract_inverted_index.images | 24 |
| abstract_inverted_index.memory | 15 |
| abstract_inverted_index.method | 73 |
| abstract_inverted_index.models | 10 |
| abstract_inverted_index.module | 90, 101 |
| abstract_inverted_index.suffer | 51 |
| abstract_inverted_index.tasks. | 113 |
| abstract_inverted_index.tokens | 5 |
| abstract_inverted_index.visual | 4, 105 |
| abstract_inverted_index.(MLLMs) | 11 |
| abstract_inverted_index.Script, | 69 |
| abstract_inverted_index.address | 64 |
| abstract_inverted_index.diverse | 81 |
| abstract_inverted_index.enhance | 109 |
| abstract_inverted_index.methods | 42 |
| abstract_inverted_index.prefill | 147 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.pruning | 28, 72, 89, 100, 138 |
| abstract_inverted_index.removes | 92 |
| abstract_inverted_index.speedup | 148 |
| abstract_inverted_index.tokens, | 95 |
| abstract_inverted_index.videos. | 26 |
| abstract_inverted_index.accuracy | 134 |
| abstract_inverted_index.achieves | 128, 143 |
| abstract_inverted_index.compared | 135 |
| abstract_inverted_index.existing | 41, 137 |
| abstract_inverted_index.fourteen | 116 |
| abstract_inverted_index.handling | 22 |
| abstract_inverted_index.language | 9 |
| abstract_inverted_index.latency, | 19 |
| abstract_inverted_index.methods. | 139 |
| abstract_inverted_index.mitigate | 34 |
| abstract_inverted_index.modules: | 86 |
| abstract_inverted_index.original | 158 |
| abstract_inverted_index.reducing | 58 |
| abstract_inverted_index.removing | 38 |
| abstract_inverted_index.requires | 75 |
| abstract_inverted_index.semantic | 99 |
| abstract_inverted_index.visually | 93 |
| abstract_inverted_index.Together, | 107 |
| abstract_inverted_index.attention | 56 |
| abstract_inverted_index.comprises | 84 |
| abstract_inverted_index.excessive | 14 |
| abstract_inverted_index.inference | 18 |
| abstract_inverted_index.preserves | 103 |
| abstract_inverted_index.redundant | 94 |
| abstract_inverted_index.relevance | 45 |
| abstract_inverted_index.retaining | 154 |
| abstract_inverted_index.technique | 31 |
| abstract_inverted_index.benchmarks | 117 |
| abstract_inverted_index.efficiency | 131 |
| abstract_inverted_index.especially | 20 |
| abstract_inverted_index.multimodal | 7, 112 |
| abstract_inverted_index.predictive | 133 |
| abstract_inverted_index.reduction, | 152 |
| abstract_inverted_index.retraining | 77 |
| abstract_inverted_index.Experiments | 114 |
| abstract_inverted_index.challenges, | 66 |
| abstract_inverted_index.consumption | 16 |
| abstract_inverted_index.generalizes | 79 |
| abstract_inverted_index.limitations | 54 |
| abstract_inverted_index.mechanisms, | 57 |
| abstract_inverted_index.performance | 110 |
| abstract_inverted_index.redundancy, | 39 |
| abstract_inverted_index.adaptability | 60 |
| abstract_inverted_index.consistently | 127 |
| abstract_inverted_index.information. | 106 |
| abstract_inverted_index.performance. | 159 |
| abstract_inverted_index.plug-and-play | 71 |
| abstract_inverted_index.understanding | 122 |
| abstract_inverted_index.LLaVA-NeXT-7B, | 141 |
| abstract_inverted_index.effectiveness. | 62 |
| abstract_inverted_index.query-relevant | 104 |
| abstract_inverted_index.high-resolution | 23 |
| abstract_inverted_index.graph-structured | 88 |
| abstract_inverted_index.query-conditioned | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |