ScriptWorld: Text Based Environment for Learning Procedural Knowledge Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2023/566
Text-based games provide a framework for developing natural language understanding and commonsense knowledge about the world in reinforcement learning based agents. Existing text-based environments often rely on fictional situations and characters to create a gaming framework and are far from real-world scenarios. In this paper, we introduce ScriptWorld: a text-based environment for teaching agents about real-world daily chores and hence imparting commonsense knowledge. To the best of our knowledge, it is the first interactive text-based gaming framework that consists of daily real-world human activities designed using scripts dataset. We provide gaming environments for 10 daily activities and perform a detailed analysis of the proposed environment. We develop RL-based baseline models/agents to play the games in ScriptWorld. To understand the role of language models in such environments, we leverage features obtained from pre-trained language models in the RL agents. Our experiments show that prior knowledge obtained from a pre-trained language model helps to solve real-world text-based gaming environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2023/566
- https://www.ijcai.org/proceedings/2023/0566.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385768029
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385768029Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2023/566Digital Object Identifier
- Title
-
ScriptWorld: Text Based Environment for Learning Procedural KnowledgeWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-01Full publication date if available
- Authors
-
Abhinav Joshi, Areeb Ahmad, Umang Pandey, Ashutosh ModiList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2023/566Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2023/0566.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2023/0566.pdfDirect OA link when available
- Concepts
-
Scripting language, Computer science, Leverage (statistics), Reinforcement learning, Commonsense reasoning, Artificial intelligence, Commonsense knowledge, Natural language, Natural language understanding, Human–computer interaction, Natural language processing, Knowledge extraction, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385768029 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2023/566 |
| ids.doi | https://doi.org/10.24963/ijcai.2023/566 |
| ids.openalex | https://openalex.org/W4385768029 |
| fwci | 0.51088578 |
| type | article |
| title | ScriptWorld: Text Based Environment for Learning Procedural Knowledge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5103 |
| biblio.first_page | 5095 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9965999722480774 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61423126 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8396968841552734 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q187432 |
| concepts[0].display_name | Scripting language |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8129330277442932 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153083717 |
| concepts[2].level | 2 |
| concepts[2].score | 0.781819224357605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[2].display_name | Leverage (statistics) |
| concepts[3].id | https://openalex.org/C97541855 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5442292094230652 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[3].display_name | Reinforcement learning |
| concepts[4].id | https://openalex.org/C193221554 |
| concepts[4].level | 2 |
| concepts[4].score | 0.533586859703064 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5153664 |
| concepts[4].display_name | Commonsense reasoning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5157085061073303 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C30542707 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5059422850608826 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1603203 |
| concepts[6].display_name | Commonsense knowledge |
| concepts[7].id | https://openalex.org/C195324797 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4815261960029602 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[7].display_name | Natural language |
| concepts[8].id | https://openalex.org/C2779439875 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42672958970069885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[8].display_name | Natural language understanding |
| concepts[9].id | https://openalex.org/C107457646 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41406264901161194 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[9].display_name | Human–computer interaction |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.40995001792907715 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C120567893 |
| concepts[11].level | 2 |
| concepts[11].score | 0.27284568548202515 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1582085 |
| concepts[11].display_name | Knowledge extraction |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10529109835624695 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/scripting-language |
| keywords[0].score | 0.8396968841552734 |
| keywords[0].display_name | Scripting language |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8129330277442932 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/leverage |
| keywords[2].score | 0.781819224357605 |
| keywords[2].display_name | Leverage (statistics) |
| keywords[3].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[3].score | 0.5442292094230652 |
| keywords[3].display_name | Reinforcement learning |
| keywords[4].id | https://openalex.org/keywords/commonsense-reasoning |
| keywords[4].score | 0.533586859703064 |
| keywords[4].display_name | Commonsense reasoning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5157085061073303 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/commonsense-knowledge |
| keywords[6].score | 0.5059422850608826 |
| keywords[6].display_name | Commonsense knowledge |
| keywords[7].id | https://openalex.org/keywords/natural-language |
| keywords[7].score | 0.4815261960029602 |
| keywords[7].display_name | Natural language |
| keywords[8].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[8].score | 0.42672958970069885 |
| keywords[8].display_name | Natural language understanding |
| keywords[9].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[9].score | 0.41406264901161194 |
| keywords[9].display_name | Human–computer interaction |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.40995001792907715 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/knowledge-extraction |
| keywords[11].score | 0.27284568548202515 |
| keywords[11].display_name | Knowledge extraction |
| keywords[12].id | https://openalex.org/keywords/programming-language |
| keywords[12].score | 0.10529109835624695 |
| keywords[12].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2023/566 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2023/0566.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2023/566 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103253154 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6756-1126 |
| authorships[0].author.display_name | Abhinav Joshi |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[0].affiliations[0].raw_affiliation_string | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[0].institutions[0].id | https://openalex.org/I94234084 |
| authorships[0].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Abhinav Joshi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[1].author.id | https://openalex.org/A5102533871 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Areeb Ahmad |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[1].affiliations[0].raw_affiliation_string | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[1].institutions[0].id | https://openalex.org/I94234084 |
| authorships[1].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Areeb Ahmad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[2].author.id | https://openalex.org/A5058435167 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Umang Pandey |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[2].affiliations[0].raw_affiliation_string | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[2].institutions[0].id | https://openalex.org/I94234084 |
| authorships[2].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Umang Pandey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[3].author.id | https://openalex.org/A5076043215 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0962-8350 |
| authorships[3].author.display_name | Ashutosh Modi |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[3].affiliations[0].raw_affiliation_string | Indian Institute of Technology Kanpur (IIT Kanpur) |
| authorships[3].institutions[0].id | https://openalex.org/I94234084 |
| authorships[3].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ashutosh Modi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Indian Institute of Technology Kanpur (IIT Kanpur) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2023/0566.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ScriptWorld: Text Based Environment for Learning Procedural Knowledge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2928107702, https://openalex.org/W3190822525, https://openalex.org/W3091195047, https://openalex.org/W2943368643, https://openalex.org/W181868102, https://openalex.org/W4327927978, https://openalex.org/W2968908603, https://openalex.org/W3175270222, https://openalex.org/W3180295840, https://openalex.org/W4296269439 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2023/566 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2023/0566.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/566 |
| primary_location.id | doi:10.24963/ijcai.2023/566 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2023/0566.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2023/566 |
| publication_date | 2023-08-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2970586934, https://openalex.org/W4288263337, https://openalex.org/W4206185536, https://openalex.org/W2736601468, https://openalex.org/W4288268123, https://openalex.org/W2517585385, https://openalex.org/W2164585080, https://openalex.org/W2970641574, https://openalex.org/W4287887209, https://openalex.org/W41554520, https://openalex.org/W2573974208, https://openalex.org/W2168359464, https://openalex.org/W3000752281, https://openalex.org/W3037871539, https://openalex.org/W1934909785, https://openalex.org/W2252215150, https://openalex.org/W3035850279, https://openalex.org/W3099204253, https://openalex.org/W2250539671, https://openalex.org/W2810346659, https://openalex.org/W3104429108, https://openalex.org/W2791374212, https://openalex.org/W2766569996, https://openalex.org/W2963498218, https://openalex.org/W2806055002, https://openalex.org/W2258865027, https://openalex.org/W2252052418, https://openalex.org/W4287073218, https://openalex.org/W2743560339, https://openalex.org/W2593847145, https://openalex.org/W2964179661, https://openalex.org/W2972550240, https://openalex.org/W243270425, https://openalex.org/W2117226699, https://openalex.org/W1702669762, https://openalex.org/W2996887765, https://openalex.org/W3092241275 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 3, 33, 48, 98, 146 |
| abstract_inverted_index.10 | 93 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.RL | 136 |
| abstract_inverted_index.To | 63, 116 |
| abstract_inverted_index.We | 88, 105 |
| abstract_inverted_index.in | 16, 114, 123, 134 |
| abstract_inverted_index.is | 70 |
| abstract_inverted_index.it | 69 |
| abstract_inverted_index.of | 66, 79, 101, 120 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 31, 110, 151 |
| abstract_inverted_index.we | 45, 126 |
| abstract_inverted_index.Our | 138 |
| abstract_inverted_index.and | 10, 29, 36, 58, 96 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.far | 38 |
| abstract_inverted_index.for | 5, 51, 92 |
| abstract_inverted_index.our | 67 |
| abstract_inverted_index.the | 14, 64, 71, 102, 112, 118, 135 |
| abstract_inverted_index.best | 65 |
| abstract_inverted_index.from | 39, 130, 145 |
| abstract_inverted_index.play | 111 |
| abstract_inverted_index.rely | 25 |
| abstract_inverted_index.role | 119 |
| abstract_inverted_index.show | 140 |
| abstract_inverted_index.such | 124 |
| abstract_inverted_index.that | 77, 141 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.about | 13, 54 |
| abstract_inverted_index.based | 19 |
| abstract_inverted_index.daily | 56, 80, 94 |
| abstract_inverted_index.first | 72 |
| abstract_inverted_index.games | 1, 113 |
| abstract_inverted_index.helps | 150 |
| abstract_inverted_index.hence | 59 |
| abstract_inverted_index.human | 82 |
| abstract_inverted_index.model | 149 |
| abstract_inverted_index.often | 24 |
| abstract_inverted_index.prior | 142 |
| abstract_inverted_index.solve | 152 |
| abstract_inverted_index.using | 85 |
| abstract_inverted_index.world | 15 |
| abstract_inverted_index.agents | 53 |
| abstract_inverted_index.chores | 57 |
| abstract_inverted_index.create | 32 |
| abstract_inverted_index.gaming | 34, 75, 90, 155 |
| abstract_inverted_index.models | 122, 133 |
| abstract_inverted_index.paper, | 44 |
| abstract_inverted_index.agents. | 20, 137 |
| abstract_inverted_index.develop | 106 |
| abstract_inverted_index.natural | 7 |
| abstract_inverted_index.perform | 97 |
| abstract_inverted_index.provide | 2, 89 |
| abstract_inverted_index.scripts | 86 |
| abstract_inverted_index.Existing | 21 |
| abstract_inverted_index.RL-based | 107 |
| abstract_inverted_index.analysis | 100 |
| abstract_inverted_index.baseline | 108 |
| abstract_inverted_index.consists | 78 |
| abstract_inverted_index.dataset. | 87 |
| abstract_inverted_index.designed | 84 |
| abstract_inverted_index.detailed | 99 |
| abstract_inverted_index.features | 128 |
| abstract_inverted_index.language | 8, 121, 132, 148 |
| abstract_inverted_index.learning | 18 |
| abstract_inverted_index.leverage | 127 |
| abstract_inverted_index.obtained | 129, 144 |
| abstract_inverted_index.proposed | 103 |
| abstract_inverted_index.teaching | 52 |
| abstract_inverted_index.fictional | 27 |
| abstract_inverted_index.framework | 4, 35, 76 |
| abstract_inverted_index.imparting | 60 |
| abstract_inverted_index.introduce | 46 |
| abstract_inverted_index.knowledge | 12, 143 |
| abstract_inverted_index.Text-based | 0 |
| abstract_inverted_index.activities | 83, 95 |
| abstract_inverted_index.characters | 30 |
| abstract_inverted_index.developing | 6 |
| abstract_inverted_index.knowledge, | 68 |
| abstract_inverted_index.knowledge. | 62 |
| abstract_inverted_index.real-world | 40, 55, 81, 153 |
| abstract_inverted_index.scenarios. | 41 |
| abstract_inverted_index.situations | 28 |
| abstract_inverted_index.text-based | 22, 49, 74, 154 |
| abstract_inverted_index.understand | 117 |
| abstract_inverted_index.commonsense | 11, 61 |
| abstract_inverted_index.environment | 50 |
| abstract_inverted_index.experiments | 139 |
| abstract_inverted_index.interactive | 73 |
| abstract_inverted_index.pre-trained | 131, 147 |
| abstract_inverted_index.ScriptWorld. | 115 |
| abstract_inverted_index.ScriptWorld: | 47 |
| abstract_inverted_index.environment. | 104 |
| abstract_inverted_index.environments | 23, 91 |
| abstract_inverted_index.environments, | 125 |
| abstract_inverted_index.environments. | 156 |
| abstract_inverted_index.models/agents | 109 |
| abstract_inverted_index.reinforcement | 17 |
| abstract_inverted_index.understanding | 9 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.67487571 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |