SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic Communications Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.19785
Deep learning (DL) enabled semantic communications leverage DL to train encoders and decoders (codecs) to extract and recover semantic information. However, most semantic training datasets contain personal private information. Such concerns call for enormous requirements for specified data erasure from semantic codecs when previous users hope to move their data from the semantic system. {Existing machine unlearning solutions remove data contribution from trained models, yet usually in supervised sole model scenarios. These methods are infeasible in semantic communications that often need to jointly train unsupervised encoders and decoders.} In this paper, we investigate the unlearning problem in DL-enabled semantic communications and propose a semantic communication unlearning (SCU) scheme to tackle the problem. {SCU includes two key components. Firstly,} we customize the joint unlearning method for semantic codecs, including the encoder and decoder, by minimizing mutual information between the learned semantic representation and the erased samples. {Secondly,} to compensate for semantic model utility degradation caused by unlearning, we propose a contrastive compensation method, which considers the erased data as the negative samples and the remaining data as the positive samples to retrain the unlearned semantic models contrastively. Theoretical analysis and extensive experimental results on three representative datasets demonstrate the effectiveness and efficiency of our proposed methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.19785
- https://arxiv.org/pdf/2502.19785
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416149819
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416149819Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.19785Digital Object Identifier
- Title
-
SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic CommunicationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-27Full publication date if available
- Authors
-
Weiqi Wang, Zhiyi Tian, Chenhan Zhang, Shui YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.19785Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.19785Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.19785Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416149819 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.19785 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.19785 |
| ids.openalex | https://openalex.org/W4416149819 |
| fwci | |
| type | preprint |
| title | SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic Communications |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.19785 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.19785 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.19785 |
| locations[1].id | doi:10.48550/arxiv.2502.19785 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.19785 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101907050 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7905-3126 |
| authorships[0].author.display_name | Weiqi Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Weiqi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059567156 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8905-0941 |
| authorships[1].author.display_name | Zhiyi Tian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tian, Zhiyi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061304518 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2352-0485 |
| authorships[2].author.display_name | Chenhan Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Chenhan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005228053 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4485-6743 |
| authorships[3].author.display_name | Shui Yu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yu, Shui |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.19785 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | SCU: An Efficient Machine Unlearning Scheme for Deep Learning Enabled Semantic Communications |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T06:25:34.151263 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.19785 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.19785 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.19785 |
| primary_location.id | pmh:oai:arXiv.org:2502.19785 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.19785 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.19785 |
| publication_date | 2025-02-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 102, 158 |
| abstract_inverted_index.DL | 7 |
| abstract_inverted_index.In | 88 |
| abstract_inverted_index.as | 167, 175 |
| abstract_inverted_index.by | 132, 154 |
| abstract_inverted_index.in | 66, 75, 96 |
| abstract_inverted_index.of | 201 |
| abstract_inverted_index.on | 192 |
| abstract_inverted_index.to | 8, 14, 46, 81, 108, 146, 179 |
| abstract_inverted_index.we | 91, 118, 156 |
| abstract_inverted_index.and | 11, 16, 86, 100, 130, 141, 171, 188, 199 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.for | 32, 35, 124, 148 |
| abstract_inverted_index.key | 115 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 51, 93, 110, 120, 128, 137, 142, 164, 168, 172, 176, 181, 197 |
| abstract_inverted_index.two | 114 |
| abstract_inverted_index.yet | 64 |
| abstract_inverted_index.(DL) | 2 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.Such | 29 |
| abstract_inverted_index.call | 31 |
| abstract_inverted_index.data | 37, 49, 59, 166, 174 |
| abstract_inverted_index.from | 39, 50, 61 |
| abstract_inverted_index.hope | 45 |
| abstract_inverted_index.most | 21 |
| abstract_inverted_index.move | 47 |
| abstract_inverted_index.need | 80 |
| abstract_inverted_index.sole | 68 |
| abstract_inverted_index.that | 78 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.when | 42 |
| abstract_inverted_index.{SCU | 112 |
| abstract_inverted_index.(SCU) | 106 |
| abstract_inverted_index.These | 71 |
| abstract_inverted_index.joint | 121 |
| abstract_inverted_index.model | 69, 150 |
| abstract_inverted_index.often | 79 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.three | 193 |
| abstract_inverted_index.train | 9, 83 |
| abstract_inverted_index.users | 44 |
| abstract_inverted_index.which | 162 |
| abstract_inverted_index.caused | 153 |
| abstract_inverted_index.codecs | 41 |
| abstract_inverted_index.erased | 143, 165 |
| abstract_inverted_index.method | 123 |
| abstract_inverted_index.models | 184 |
| abstract_inverted_index.mutual | 134 |
| abstract_inverted_index.paper, | 90 |
| abstract_inverted_index.remove | 58 |
| abstract_inverted_index.scheme | 107 |
| abstract_inverted_index.tackle | 109 |
| abstract_inverted_index.between | 136 |
| abstract_inverted_index.codecs, | 126 |
| abstract_inverted_index.contain | 25 |
| abstract_inverted_index.enabled | 3 |
| abstract_inverted_index.encoder | 129 |
| abstract_inverted_index.erasure | 38 |
| abstract_inverted_index.extract | 15 |
| abstract_inverted_index.jointly | 82 |
| abstract_inverted_index.learned | 138 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.method, | 161 |
| abstract_inverted_index.methods | 72 |
| abstract_inverted_index.models, | 63 |
| abstract_inverted_index.private | 27 |
| abstract_inverted_index.problem | 95 |
| abstract_inverted_index.propose | 101, 157 |
| abstract_inverted_index.recover | 17 |
| abstract_inverted_index.results | 191 |
| abstract_inverted_index.retrain | 180 |
| abstract_inverted_index.samples | 170, 178 |
| abstract_inverted_index.system. | 53 |
| abstract_inverted_index.trained | 62 |
| abstract_inverted_index.usually | 65 |
| abstract_inverted_index.utility | 151 |
| abstract_inverted_index.(codecs) | 13 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.analysis | 187 |
| abstract_inverted_index.concerns | 30 |
| abstract_inverted_index.datasets | 24, 195 |
| abstract_inverted_index.decoder, | 131 |
| abstract_inverted_index.decoders | 12 |
| abstract_inverted_index.encoders | 10, 85 |
| abstract_inverted_index.enormous | 33 |
| abstract_inverted_index.includes | 113 |
| abstract_inverted_index.learning | 1 |
| abstract_inverted_index.leverage | 6 |
| abstract_inverted_index.methods. | 204 |
| abstract_inverted_index.negative | 169 |
| abstract_inverted_index.personal | 26 |
| abstract_inverted_index.positive | 177 |
| abstract_inverted_index.previous | 43 |
| abstract_inverted_index.problem. | 111 |
| abstract_inverted_index.proposed | 203 |
| abstract_inverted_index.samples. | 144 |
| abstract_inverted_index.semantic | 4, 18, 22, 40, 52, 76, 98, 103, 125, 139, 149, 183 |
| abstract_inverted_index.training | 23 |
| abstract_inverted_index.Firstly,} | 117 |
| abstract_inverted_index.considers | 163 |
| abstract_inverted_index.customize | 119 |
| abstract_inverted_index.extensive | 189 |
| abstract_inverted_index.including | 127 |
| abstract_inverted_index.remaining | 173 |
| abstract_inverted_index.solutions | 57 |
| abstract_inverted_index.specified | 36 |
| abstract_inverted_index.unlearned | 182 |
| abstract_inverted_index.{Existing | 54 |
| abstract_inverted_index.DL-enabled | 97 |
| abstract_inverted_index.compensate | 147 |
| abstract_inverted_index.decoders.} | 87 |
| abstract_inverted_index.efficiency | 200 |
| abstract_inverted_index.infeasible | 74 |
| abstract_inverted_index.minimizing | 133 |
| abstract_inverted_index.scenarios. | 70 |
| abstract_inverted_index.supervised | 67 |
| abstract_inverted_index.unlearning | 56, 94, 105, 122 |
| abstract_inverted_index.Theoretical | 186 |
| abstract_inverted_index.components. | 116 |
| abstract_inverted_index.contrastive | 159 |
| abstract_inverted_index.degradation | 152 |
| abstract_inverted_index.demonstrate | 196 |
| abstract_inverted_index.information | 135 |
| abstract_inverted_index.investigate | 92 |
| abstract_inverted_index.unlearning, | 155 |
| abstract_inverted_index.{Secondly,} | 145 |
| abstract_inverted_index.compensation | 160 |
| abstract_inverted_index.contribution | 60 |
| abstract_inverted_index.experimental | 190 |
| abstract_inverted_index.information. | 19, 28 |
| abstract_inverted_index.requirements | 34 |
| abstract_inverted_index.unsupervised | 84 |
| abstract_inverted_index.communication | 104 |
| abstract_inverted_index.effectiveness | 198 |
| abstract_inverted_index.communications | 5, 77, 99 |
| abstract_inverted_index.contrastively. | 185 |
| abstract_inverted_index.representation | 140 |
| abstract_inverted_index.representative | 194 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |