Search to integrate multi-level heuristics with graph neural networks for multi-relational link prediction Article Swipe
Junjie Wu
,
Haotong Du
,
Haowei Xu
,
Xianghua Li
,
Chao Gao
,
Zhen Wang
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.neucom.2025.130776
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.neucom.2025.130776
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.neucom.2025.130776
- OA Status
- hybrid
- Cited By
- 3
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411847763
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411847763Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.neucom.2025.130776Digital Object Identifier
- Title
-
Search to integrate multi-level heuristics with graph neural networks for multi-relational link predictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Junjie Wu, Haotong Du, Haowei Xu, Xianghua Li, Chao Gao, Zhen WangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.neucom.2025.130776Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.neucom.2025.130776Direct OA link when available
- Concepts
-
Link (geometry), Computer science, Heuristics, Artificial neural network, Graph, Artificial intelligence, Theoretical computer science, Relational database, Machine learning, Data mining, Computer network, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411847763 |
|---|---|
| doi | https://doi.org/10.1016/j.neucom.2025.130776 |
| ids.doi | https://doi.org/10.1016/j.neucom.2025.130776 |
| ids.openalex | https://openalex.org/W4411847763 |
| fwci | 14.45923544 |
| type | article |
| title | Search to integrate multi-level heuristics with graph neural networks for multi-relational link prediction |
| biblio.issue | |
| biblio.volume | 649 |
| biblio.last_page | 130776 |
| biblio.first_page | 130776 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10887 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9872000217437744 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bioinformatics and Genomic Networks |
| is_xpac | False |
| apc_list.value | 2470 |
| apc_list.currency | USD |
| apc_list.value_usd | 2470 |
| apc_paid.value | 2470 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2470 |
| concepts[0].id | https://openalex.org/C2778753846 |
| concepts[0].level | 2 |
| concepts[0].score | 0.771522581577301 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6554239 |
| concepts[0].display_name | Link (geometry) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7229613661766052 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C127705205 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7019852995872498 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[2].display_name | Heuristics |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.573253870010376 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5118324160575867 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47134870290756226 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C80444323 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4262280762195587 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[6].display_name | Theoretical computer science |
| concepts[7].id | https://openalex.org/C5655090 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4243414103984833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192588 |
| concepts[7].display_name | Relational database |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39685773849487305 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32605892419815063 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07377663254737854 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/link |
| keywords[0].score | 0.771522581577301 |
| keywords[0].display_name | Link (geometry) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7229613661766052 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/heuristics |
| keywords[2].score | 0.7019852995872498 |
| keywords[2].display_name | Heuristics |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.573253870010376 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.5118324160575867 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.47134870290756226 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[6].score | 0.4262280762195587 |
| keywords[6].display_name | Theoretical computer science |
| keywords[7].id | https://openalex.org/keywords/relational-database |
| keywords[7].score | 0.4243414103984833 |
| keywords[7].display_name | Relational database |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.39685773849487305 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.32605892419815063 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.07377663254737854 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1016/j.neucom.2025.130776 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S45693802 |
| locations[0].source.issn | 0925-2312, 1872-8286 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0925-2312 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neurocomputing |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neurocomputing |
| locations[0].landing_page_url | https://doi.org/10.1016/j.neucom.2025.130776 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030746978 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4922-2398 |
| authorships[0].author.display_name | Junjie Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Junjie Wu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056251551 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5094-7241 |
| authorships[1].author.display_name | Haotong Du |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haotong Du |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100581791 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haowei Xu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haowei Xu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100400536 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2172-7271 |
| authorships[3].author.display_name | Xianghua Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xianghua Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086236078 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5865-2285 |
| authorships[4].author.display_name | Chao Gao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chao Gao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100422381 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8637-8375 |
| authorships[5].author.display_name | Zhen Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhen Wang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.neucom.2025.130776 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Search to integrate multi-level heuristics with graph neural networks for multi-relational link prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2280422768, https://openalex.org/W3143197806, https://openalex.org/W4252555497, https://openalex.org/W3121175838, https://openalex.org/W3016293053, https://openalex.org/W1690653314, https://openalex.org/W2275524962, https://openalex.org/W2401723157, https://openalex.org/W2065055572, https://openalex.org/W2784269775 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.neucom.2025.130776 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S45693802 |
| best_oa_location.source.issn | 0925-2312, 1872-8286 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0925-2312 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neurocomputing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neurocomputing |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.neucom.2025.130776 |
| primary_location.id | doi:10.1016/j.neucom.2025.130776 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S45693802 |
| primary_location.source.issn | 0925-2312, 1872-8286 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0925-2312 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neurocomputing |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neurocomputing |
| primary_location.landing_page_url | https://doi.org/10.1016/j.neucom.2025.130776 |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3080203535, https://openalex.org/W4391233778, https://openalex.org/W4380136659, https://openalex.org/W4205657196, https://openalex.org/W4283208249, https://openalex.org/W4362466093, https://openalex.org/W2728059831, https://openalex.org/W4245845494, https://openalex.org/W4206749867, https://openalex.org/W3169717287, https://openalex.org/W3208080130, https://openalex.org/W2604314403, https://openalex.org/W4397002064, https://openalex.org/W3188935343, https://openalex.org/W4402530312, https://openalex.org/W3034723893, https://openalex.org/W4309609199, https://openalex.org/W4385567036, https://openalex.org/W3176189116, https://openalex.org/W4206865894, https://openalex.org/W3080510905, https://openalex.org/W4386303572, https://openalex.org/W6601955380, https://openalex.org/W6748856961, https://openalex.org/W2386195190, https://openalex.org/W6779351305, https://openalex.org/W3035664258, https://openalex.org/W2950393809, https://openalex.org/W2951105272, https://openalex.org/W6804132654, https://openalex.org/W4396846534, https://openalex.org/W6601149775, https://openalex.org/W6601636429, https://openalex.org/W4205919409, https://openalex.org/W4394725454, https://openalex.org/W4392882186, https://openalex.org/W4200073570, https://openalex.org/W6874006965, https://openalex.org/W3179205840, https://openalex.org/W4321480062, https://openalex.org/W3153131045, https://openalex.org/W2007444087, https://openalex.org/W2154454189, https://openalex.org/W6600669965, https://openalex.org/W6607459698, https://openalex.org/W3096533519, https://openalex.org/W2159583324, https://openalex.org/W2250184916, https://openalex.org/W6600266142, https://openalex.org/W4221160815, https://openalex.org/W3171160983, https://openalex.org/W4388776291, https://openalex.org/W4318828927, https://openalex.org/W6803936008, https://openalex.org/W3214769818, https://openalex.org/W3213267662, https://openalex.org/W3095086313, https://openalex.org/W3199430355, https://openalex.org/W4404352397, https://openalex.org/W2963757395 |
| referenced_works_count | 60 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.9859458 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |