Second-order cone programming support vector machine based on generalized memory kernel Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7539972/v1
This paper proposes a new robust support vector machine framework based on generalized memory kernel and second-order cone programming. Aiming at the generalization limitations and insufficient memory ability (i.e., fitting ability) of traditional SVM in an environment with uncertain data distribution, an innovative linear combination structure of dual-scale radial basis kernel functions is designed: the wide-scale kernel $ K_{g} $(with small bandwidth parameter $ \sigma $) captures global patterns to enhance generalization performance, while the narrow-scale kernel $ K_{g} $ (with large bandwidth parameter $ \sigma_{m}\gg\sigma $) achieves accurate fitting of training samples. The weight coefficient $ \tau $ dynamically adjusts the memory-generalization balance. On this basis, the kernel mapping is embedded into the distributionally robust framework of SOCP-SVM, and the finally constructed optimization problem is efficiently solved in the form of a linear objective function and three sets of second-order cone constraints. Experiments show that this method ensures the upper bound of classification error rate ($ \leq1-\eta_{i} $) and adaptively controls the bias-variance characteristics of the model by adjusting $ \tau $, significantly improving the classification robustness of small-sample and noisy data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7539972/v1
- https://www.researchsquare.com/article/rs-7539972/latest.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414588131
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414588131Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7539972/v1Digital Object Identifier
- Title
-
Second-order cone programming support vector machine based on generalized memory kernelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
J. Zhao, Xuewen MuList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7539972/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7539972/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7539972/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414588131 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7539972/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7539972/v1 |
| ids.openalex | https://openalex.org/W4414588131 |
| fwci | 0.0 |
| type | article |
| title | Second-order cone programming support vector machine based on generalized memory kernel |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13717 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8700000047683716 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Algorithms and Applications |
| topics[1].id | https://openalex.org/T14225 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8306999802589417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Advanced Sensor and Control Systems |
| topics[2].id | https://openalex.org/T14474 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.7436000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Industrial Technology and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7539972/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7539972/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7539972/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070851446 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6408-2314 |
| authorships[0].author.display_name | J. Zhao |
| authorships[0].affiliations[0].raw_affiliation_string | 西安电子科技大学 |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jihao Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 西安电子科技大学 |
| authorships[1].author.id | https://openalex.org/A5025090861 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8491-1511 |
| authorships[1].author.display_name | Xuewen Mu |
| authorships[1].affiliations[0].raw_affiliation_string | 西安电子科技大学 |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Xuewen Mu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 西安电子科技大学 |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7539972/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Second-order cone programming support vector machine based on generalized memory kernel |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13717 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8700000047683716 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Algorithms and Applications |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7539972/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7539972/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7539972/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7539972/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7539972/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7539972/v1 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.$ | 58, 64, 78, 80, 85, 97, 99, 171 |
| abstract_inverted_index.a | 4, 133 |
| abstract_inverted_index.$) | 66, 87, 159 |
| abstract_inverted_index.$, | 173 |
| abstract_inverted_index.($ | 157 |
| abstract_inverted_index.On | 105 |
| abstract_inverted_index.an | 36, 42 |
| abstract_inverted_index.at | 21 |
| abstract_inverted_index.by | 169 |
| abstract_inverted_index.in | 35, 129 |
| abstract_inverted_index.is | 53, 111, 126 |
| abstract_inverted_index.of | 32, 47, 91, 118, 132, 140, 153, 166, 179 |
| abstract_inverted_index.on | 12 |
| abstract_inverted_index.to | 70 |
| abstract_inverted_index.SVM | 34 |
| abstract_inverted_index.The | 94 |
| abstract_inverted_index.and | 16, 25, 120, 137, 160, 181 |
| abstract_inverted_index.new | 5 |
| abstract_inverted_index.the | 22, 55, 75, 102, 108, 114, 121, 130, 150, 163, 167, 176 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.\tau | 98, 172 |
| abstract_inverted_index.cone | 18, 142 |
| abstract_inverted_index.data | 40 |
| abstract_inverted_index.form | 131 |
| abstract_inverted_index.into | 113 |
| abstract_inverted_index.rate | 156 |
| abstract_inverted_index.sets | 139 |
| abstract_inverted_index.show | 145 |
| abstract_inverted_index.that | 146 |
| abstract_inverted_index.this | 106, 147 |
| abstract_inverted_index.with | 38 |
| abstract_inverted_index.(with | 81 |
| abstract_inverted_index.K_{g} | 59, 79 |
| abstract_inverted_index.based | 11 |
| abstract_inverted_index.basis | 50 |
| abstract_inverted_index.bound | 152 |
| abstract_inverted_index.data. | 183 |
| abstract_inverted_index.error | 155 |
| abstract_inverted_index.large | 82 |
| abstract_inverted_index.model | 168 |
| abstract_inverted_index.noisy | 182 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.small | 61 |
| abstract_inverted_index.three | 138 |
| abstract_inverted_index.upper | 151 |
| abstract_inverted_index.while | 74 |
| abstract_inverted_index.$(with | 60 |
| abstract_inverted_index.(i.e., | 29 |
| abstract_inverted_index.Aiming | 20 |
| abstract_inverted_index.\sigma | 65 |
| abstract_inverted_index.basis, | 107 |
| abstract_inverted_index.global | 68 |
| abstract_inverted_index.kernel | 15, 51, 57, 77, 109 |
| abstract_inverted_index.linear | 44, 134 |
| abstract_inverted_index.memory | 14, 27 |
| abstract_inverted_index.method | 148 |
| abstract_inverted_index.radial | 49 |
| abstract_inverted_index.robust | 6, 116 |
| abstract_inverted_index.solved | 128 |
| abstract_inverted_index.vector | 8 |
| abstract_inverted_index.weight | 95 |
| abstract_inverted_index.ability | 28 |
| abstract_inverted_index.adjusts | 101 |
| abstract_inverted_index.enhance | 71 |
| abstract_inverted_index.ensures | 149 |
| abstract_inverted_index.finally | 122 |
| abstract_inverted_index.fitting | 30, 90 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.mapping | 110 |
| abstract_inverted_index.problem | 125 |
| abstract_inverted_index.support | 7 |
| abstract_inverted_index.ability) | 31 |
| abstract_inverted_index.accurate | 89 |
| abstract_inverted_index.achieves | 88 |
| abstract_inverted_index.balance. | 104 |
| abstract_inverted_index.captures | 67 |
| abstract_inverted_index.controls | 162 |
| abstract_inverted_index.embedded | 112 |
| abstract_inverted_index.function | 136 |
| abstract_inverted_index.patterns | 69 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.samples. | 93 |
| abstract_inverted_index.training | 92 |
| abstract_inverted_index.SOCP-SVM, | 119 |
| abstract_inverted_index.adjusting | 170 |
| abstract_inverted_index.bandwidth | 62, 83 |
| abstract_inverted_index.designed: | 54 |
| abstract_inverted_index.framework | 10, 117 |
| abstract_inverted_index.functions | 52 |
| abstract_inverted_index.improving | 175 |
| abstract_inverted_index.objective | 135 |
| abstract_inverted_index.parameter | 63, 84 |
| abstract_inverted_index.structure | 46 |
| abstract_inverted_index.uncertain | 39 |
| abstract_inverted_index.adaptively | 161 |
| abstract_inverted_index.dual-scale | 48 |
| abstract_inverted_index.innovative | 43 |
| abstract_inverted_index.robustness | 178 |
| abstract_inverted_index.wide-scale | 56 |
| abstract_inverted_index.Experiments | 144 |
| abstract_inverted_index.coefficient | 96 |
| abstract_inverted_index.combination | 45 |
| abstract_inverted_index.constructed | 123 |
| abstract_inverted_index.dynamically | 100 |
| abstract_inverted_index.efficiently | 127 |
| abstract_inverted_index.environment | 37 |
| abstract_inverted_index.generalized | 13 |
| abstract_inverted_index.limitations | 24 |
| abstract_inverted_index.traditional | 33 |
| abstract_inverted_index.constraints. | 143 |
| abstract_inverted_index.insufficient | 26 |
| abstract_inverted_index.narrow-scale | 76 |
| abstract_inverted_index.optimization | 124 |
| abstract_inverted_index.performance, | 73 |
| abstract_inverted_index.programming. | 19 |
| abstract_inverted_index.second-order | 17, 141 |
| abstract_inverted_index.small-sample | 180 |
| abstract_inverted_index.bias-variance | 164 |
| abstract_inverted_index.distribution, | 41 |
| abstract_inverted_index.significantly | 174 |
| abstract_inverted_index.\leq1-\eta_{i} | 158 |
| abstract_inverted_index.classification | 154, 177 |
| abstract_inverted_index.generalization | 23, 72 |
| abstract_inverted_index.characteristics | 165 |
| abstract_inverted_index.distributionally | 115 |
| abstract_inverted_index.\sigma_{m}\gg\sigma | 86 |
| abstract_inverted_index.memory-generalization | 103 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.57538431 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |